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Introduction

3

Urban/ Industrial impacts

• Organic matter, NH4
+, NO3

-

• Pharmaceuticals

• Faecal-related microorganisms

Naturally occurring pollutants

• Organic Matter (NOM)

• Dissolved salts

• Microorganisms

80%



Drinking Water

Drinking water treatment plant (DWTP)
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Introduction

Waterborn pathogens

Disinfection by-

products (DBPs)

Distribution 

network



Natural Organic Matter

+ Inorganic ions 

(Br-,  I-, NO2
-)

Trihalomethanes (THMs)

(CHCl3, CHBrCl2, CHBr2Cl, CHBr3)

Haloacetic acids (HAA5)

N-DBPs

+
pH 

Temperature

TimeCl2 NaOCl,

ClO2 NH2Cl

O3

Disinfection By-ProductsDBPs Precursors Disinfectant
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EU - EC 98/1998

Spain - RD 140/2003

Introduction

Formation of disinfection by-products (DBPs)

THMs < 100 μg·L-1

HAA5 < 60 μg·L-1 ? (New)
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Costs

Water Quality

DBPs

Water Demand

Regulations

Introduction

Environmental Decision Support
Systems (EDSS)
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Digitalization

Artificial Intelligence

Digital twins

Big Data

Introduction

Decision support systems

Industry 4.0



Environmental decision support systems
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Data & Knowledge 

Gathering

Problem Analysis Cognitive analysis Model selection Integration & 

Implementation

How are they designed?

Highly iterative and cyclical process

Cortés et al. (2000)

Poch et al. (2004)

Hamouda et al. (2009)

Introduction
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Environmental decision support systems

• Mechanistic models
𝑑𝑋

𝑑𝑡
=
μ𝑚·𝑆

𝐾𝑠 · 𝑆
· 𝑋

• Data-driven models

• Knowledge-based models

...

Introduction

• Hybrid models

Model selection



Environmental decision support systems

Supervisor level

Control level

Data acquisition level

DWTP Process

Expert rules

Models

Actions that modify the control 

variable

Online data acquisition

Data cleaning and 

preparation
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How are they implemented?

Cortés et al. (2000)

Poch et al. (2004)

Introduction



11

Citations per year (Web of Science)

Introduction

Environmental decision support systems

Keywords: 

“Environmental decision support system” 

and

“Water”
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Lack of generic

EDSS
Reflect

practical needs

Incorporation

of uncertainty

Implementation of EDSS at full-scale DWTPs: Challenges

(Hamouda et al., 2009;

McIntosh et al., 2011; 

Raseman et al. 2017)

(Hamouda et al., 2009)
(Raseman et al., 2017, 

Humphrey et al., 2017)

Introduction
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• Challenges in operation of DWTPs

• Digitalisation of industry

• High amount of literature in wastewater treatment, fewer on drinking water.

Motivation

Hypothesis

New models should be developed upon available knowledge and

data from full-scale plants to address operational challenges

Introduction
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Main Objective

Secondary objectives

• To develop an EDSS to help DWTP managers in setting
the most adequate operational set-points in real-time

• Preoxidation process

• DBPs formation through predictive models

• Supervision of the microbiological safety

Objectives
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Materials and Methods
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DWTP Llobregat

DWTP Ter

Ter river
Llobregat river

SWTP Prat

SWTP Blanes

Llobregat river

• Mediterranean river

• Irregular flow

• Anthropogenic impact

• Organic matter ↑

• Bromides↑

Ter river

• Taken from reservoirs

systems

• Low turbidity
≈ 4.5 million inhabitants

DWTP Cardener
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1 3 4 6

7

8

5

11

10

KMnO4

Coagulant

Flocculant ClO2

NaOCl

2

CO2

9

Llobregat DWTP

Capacity: 3.2 m3·s-1

Materials and Methods

Google Earth

1. Preoxidation

2. pH adjustment

3. Coagulation/focculation

4. Settling

5. Primary disinfection

6. Filtration

7. GAC filtration

8. Electrodialysis Reversal

9. Remineralisation

10. Secondary disinfection

11. Storage
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2 4 5 73 6

NaOCl

ClO2

Coagulant

Flocculant
NaOCl

1

CO2

Ter DWTP

Capacity: 8 m3·s-1

Materials and Methods

Google Earth

1. pH adjustment

2. Primary disinfection

3. Coagulation/focculation

4. Settling

5. GAC filtration

6. Secondary disinfection

7. Storage



Software
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Data sources

• Routine laboratory analysis

• Sensor data

• Operational data

• Data acquisition

• Data cleaning

• Model development

• Graphical user interfaces

Materials and Methods
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Results I
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Predicting the oxidant demand in a surface water
treatment plant: Model development and integration
into an environmental decision support system.

Godo-Pla, L., Emiliano, P., Valero, F., Poch, M., Sin, G., Monclús, H., 2019. Predicting the oxidant demand in full-scale

drinking water treatment using an artificial neural network: Uncertainty and sensitivity analysis. Process Saf. Environ.

Prot. 125, 317–327. https://doi.org/10.1016/j.psep.2019.03.017

Godo-Pla, L., Emiliano, P., González, S., Poch, M., Valero, F., Monclús, H., 2020. Implementation of an environmental

decision support system for controlling the pre-oxidation step at a full-scale drinking water treatment plant. Water Sci.

Technol. 81 (8), 1778-1785. https://doi.org/10.2166/wst.2020.142

https://doi.org/10.1016/j.psep.2019.03.017
https://doi.org/10.2166/wst.2020.142
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1 3 4 6

7

8

5

11

10

2

9

Results I. Preoxidation

Llobregat DWTP

• Iron and manganese

• Odour and tase compounds

• Disinfection by-products (DBP) precursors

Potassium permanganate (KMnO4)

To develop a model for predicting the oxidant dose
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Multi-layer perceptrons (MLPs)

Multiple linear regression (MLR)

Y=β0 + β1·X1 + β2·X2 + … + βn·Xn

Results I. Preoxidation

Data-driven model development

Model architecture selection
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Input features:

• UV254

• Turbidity

• Temperature

• HRT

Data division

Self-organising map algorithm

May et al. (2010)

Results I. Preoxidation

Features selection

Best subset selection

James et al. (2013)

Outliers detection

Empirical cumulative Distribution function (ECDF)

Frutiger et al. (2015)

Data handling

Model architecture selection

Data-driven model development
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Bootstrap method (N=50)

෡𝜽~𝑫 𝝁 ෡𝜽 , 𝑪𝑶𝑽 ෡𝜽

Sin and Gernaey (2017)

Results I. Preoxidation

Data handling

Model architecture selection

Parameter estimation

Data-driven model development
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MonteCarlo propagation (N=100)

෡𝜽~𝑫 𝝁 ෡𝜽 , 𝑪𝑶𝑽 ෡𝜽

Sin and Gernaey (2017)

Results I. Preoxidation

Data handling

Uncertainty analysis

Model architecture selection

Parameter estimation

Data-driven model development
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TRW

QRW

UV254RW

TurbRW

Humphrey et al. (2017)

Olden and Jackson (2002)

Connection weight

Profile method

Results I. Preoxidation

Data handling

Uncertainty analysis

Sensitivity analysis

Model architecture selection

Parameter estimation

Data-driven model development
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Data handling

Uncertainty analysis

Sensitivity analysis

Model architecture selection

Parameter estimation

Predictive model

MLP-1MLR Other MLPs

Predictive

Validation

Structural

Validation

Results I. Preoxidation

Data-driven model development

• Best balance

• MAE ≈ 0.13 mg·L-1

• ρ2
Spearman= 0.80
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Case Retrieval

Input Data

Previous solutions

Predictive Model

MLP-1

• Raw water
• Operation

Uncertainty Analysis

2017
2018

...

2019

EDSS

Implementation for decision support

Results I. Preoxidation
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Implementation for decision support

Results I. Preoxidation

• Validation period

(January-September 2019)

• Baseline values were modified based on

experience, visual inspection and laboratory

analyses.



New model for preoxidation process with MLP

Predicted error <0.15 mg/L

Uncertainty and sensitivity analysis

Integration of MLP and CBR models in an EDSS

31

Keypoints

Results I. Preoxidation



Results II
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Benchmarking empirical models for THMs formation in
drinking water systems and integration into an EDSS

Godo-Pla, L., Emiliano, P., Poch, M., Valero, F., Monclús, H., 2020. Benchmarking empirical models for THM

formation in drinking water systems: An application for decision support in Barcelona, Spain. (Under review in

Science of the Total Environment).
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1. To develop a predictive model for THMs formation

2. To link EDR performance with THMs formation

3. Integration of models for real-time support in managing the DWTP

11

10

Electrodialysis

reversal

Conventional

treatment effluent

XEDR?

Distribution network

DBPs

Results II. Electrodialysis reversal

[T
H

M
s
]

Time

Llobregat DWTP

(XEDR)

NOM ↑, Br- ↑

NaOCl

↓

(1-XEDR)

Storage tanks
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Predictive model for THMs formation

Results II. Electrodialysis reversal

Data-driven

model development

Historical Data 2019-2020

(N=573)
Data handling

Uncertainty analysis

Sensitivity analysis

Model architecture selection

Parameter estimation

Predictive model
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• Log-scaled multiple linear regressions  (MLR)
Chowdhurry et al. (2009)

[THM] = a · ([UV254]+1) b · [TOC] c · [DCl] 
d · ([Br]+1) e · T f · pH g · HRT h

Results II. Electrodialysis reversal

• Multi-layer perceptrons (MLPs) with different architectures
Kulkarni et al. (2010)

Data handling

Uncertainty analysis

Sensitivity analysis

Model architecture selection

Parameter estimation

Predictive model

Predictive model for THMs formation
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1-Hidden layer

MLPsMLR

Predictive

Validation

2-Hidden layers

MLPs

Structural

Validation

Results II. Electrodialysis reversal

Data handling

Uncertainty analysis

Sensitivity analysis

Model architecture selection

Parameter estimation

Predictive model

+ Complexity
MLR Model

R2= 0.88

MAE= 4 µg·L-1

Predictive model for THMs formation
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Results II. Electrodialysis reversal

Supply network data

DWTP efluent data

Predictive model for THMs formation
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Historical data 2015-2020

Removal characterization:

• EC, Bromide, TOC, UV254

• Temperature dependent

Predictive model MLR

[THM] = a · ([UV254]+1) b · [TOC] c · [DCl] 
d · ([Br]+1) e · T f · pH g · HRT h

Results II. Electrodialysis reversal

Linking EDR operation and THMs formation
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Point 2 ≈ 96 h

Point 1 ≈ 48 h

T
H

M
 (

μ
g

·L
-1

)

Drinking Water Treatment Plant

T
H

M
 (

μ
g

·L
-1

)

MLR predictive model
[THM]=a·[TOC] b·[UV254]c...

Integration for real-time decision support

Results II. Electrodialysis reversal
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Keypoints

Benchmark of empirical models to predict THMs with full-

scale data

Results II. Electrodialysis reversal

Operation of EDR was linked with THMs formation at 

distribution network

Integration in an EDSS for a real-time management of 

EDR.

Feasibility of empirical models for operational purposes was demonstrated.



Results III
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Control of primary disinfection in a drinking water 
treatment plant based on a fuzzy inference system

Godo-Pla, L., Rodríguez, J.J., Suquet, J., Emiliano, P., Valero, F., Poch, M., Monclús, H., 2020. Control of

primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process

Saf. Environ. Prot. 145, 63–70. https://doi.org/10.1016/j.psep.2020.07.037

https://doi.org/10.1016/j.psep.2020.07.037


42

NaOCl ClO2

Primary disinfection

• Disinfection along the

treatment process

• Oxidation of odour-causing

compounds

Results III. Primary disinfection

DBP Formation
THMs?
ClO2

-?

Ter DWTP

 Accumulated experience
 Few availability of data
 Highly correlated

 Knowledge-based models

EDSS



Fuzzy Inference System (FIS)
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• Consolidate process knowldge

• Data is difficult to obtain

• Imprecision related to human classification
using fuzzy sets

1) Fuzzification

2) Inference System

3) Defuzzification

Results III. Primary disinfection

x1, x2

IF x1 is ... AND x2 is...,  THEN y1 is ...

y1

Experience, process knowledge

Scientific basis
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Design of the control system

Results III. Primary disinfection
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FIS1

Objective:

Assess the THMs formation risk (THMFR)

accordig to raw water quality and environmental

conditions

Input variables:

TOCRW, TRW

Inference System:

(TOCRW, TRW  ClO2 Dose, ClFree)

Controlled variables:

ClO2 Dose, ClFree

Results III. Primary disinfection

Design of the control system
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FIS2

Objective:

Adjust the operational set-points accordig to 

THMs concentration and operational conditions.

Input variables:

THMST, HRTST

Inference System:

(THMST, HRTST)  (ΔClO2 Dose, ΔClFree)

Controlled variables:

ΔClO2 Dose, ΔClFree

Results III. Primary disinfection

Design of the control system
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Supervisor 
rule

Objective:

To limit the total amount of chemicals to avoid

high levels of ClO2
- and ClO3

-.

Input variables:

ClO2 Dose, ClFree

Controlled variables:

ClO2 Dose, ClFree

Results III. Primary disinfection

Design of the control system
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2018 2019

2018 2019

Results III. Primary disinfection

Full-scale implementation of fuzzy

control system.

Positively Validated 85% of the time.

More systematic dosing of chemicals

with the control system.

DBPs without exceeding threshold

levels

C
o

n
c

e
n

tr
a

ti
o

n
(m

g
·L

-1
)

T
H

M
s

(μ
g

·L
-1

)

C
lO

2
-
(μ

g
·L

-1
)

Fuzzy controlNormal operation

Set-points

DBPs



49

Keypoints

A feedback and feedforward control system to 

control primary disinfection.

Process knowledge was modelled with a fuzzy 

inference system.

Implementation at full-scale was positively validated 

85.5% of the time during 6 months.

DBPs concentration at the effluent at a safe range.

Results III. Primary disinfection



Results IV
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Development of a key performance indicator based on
quantitative microbial risk assessment
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Pollutants

Pathogens

Quality

Safety

Quantitative Microbiological Risk Analysis

(QMRA)

Results IV. QMRA Indicator

Cryptosporidium
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+

- Site-specific data

Variabilities and uncertainties

Not applicable for real-time

monitoring

Quantification of risk

Used in the design phase

QMRA Quantitative Microbiological Risk Assessment

Results IV. QMRA Indicator
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QMRA methodology (Medema et al., 2006; WHO 2009)

1) Pathogen load

2) Treatment units performance

3) Dose-response

4) Risk characterisation

Real-time QMRA indicator

Results IV. QMRA Indicator
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Results IV. QMRA Indicator

Cryptosporidium

N=112

Clostridium perfringens

N=3401

Surrogate measure (Medema et al., 2006)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we relate the pathogen load at DWTPs with online-available measures? 
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Results IV. QMRA Indicator

Correlation between: 

Clostridium perfringens

and
TurbRW (P value<<0.05 )

HRTRes (P value<<0.05 )

Relationship between online-
availbale parameters and
pathogen load

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation
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Chemical inactivation

1. Primary disinfection

2. Secondary disinfection

Results IV. QMRA Indicator

Can we estimate the treatment units performance with online measures? 

2 4 5 73 6

NaOCl

ClO2

Coagulant

Flocculant NaOCl

1

CO2Ter DWTP

CSTR model 

𝐿𝑅𝑉𝐷𝑖𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = −log(
1

1 + 𝑘𝑒 · 𝑐 · 𝑡ℎ
)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation
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Results IV. QMRA Indicator

2 4 5 73 6

NaOCl

ClO2

Coagulant

Flocculant NaOCl

1

CO2Ter DWTP

(Medema et al., 2006)

Triangular Distribution functions

Min. values: Poor performanceMEC values: Intermediate performanceMax. Values: 

Optimal performancePhysical removal

1. Coagulation/focculation (CF)

2. Rapid filtration (RF)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures? 

Need of 

online performance 

indicators

ICF and IRF
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Results IV. QMRA Indicator

2 4 5 73 6

NaOCl

ClO2

Coagulant

Flocculant NaOCl

1

CO2Ter DWTP

(Medema et al., 2006)

Triangular Distribution functions

Physical removal

1. Coagulation/focculation (CF)

2. Rapid filtration (RF)

Online performance indicators

Quality parameters

Operational parameters

~ Average turbidity (TurbAVG)

~ Mean sludge age (MSA)

ICF

(0-1)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures? 
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Results IV. QMRA Indicator

2 4 5 73 6

NaOCl

ClO2

Coagulant

Flocculant NaOCl

1

CO2Ter DWTP

(Medema et al., 2006)

Triangular Distribution functions

Physical removal

1. Coagulation/focculation (CF)

2. Rapid filtration (RF)
Quality parameters

Operational parameters

~ Average turbidity (TurbAVG)

~ Mean flow rate (MFR)

IRF

(0-1)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures? 

Online performance indicators
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Results IV. QMRA Indicator

DALY>10-6

No

QMRA-based

Indicator

High risk

Moderate risk

Low risk

10-6 >DALY>10-7

No

Yes

Yes

Risk Characterisation
• DALY

(World Health Organisation, 
2016, 2009)

Operational and quality data acquisition (SCADA)

Expected pathogen

load
Treatment performance 

characterisation

• LRVDisinfection

• LRVCF

• LRVRF

(World Health Organisation, 

2016, 2009)

Dose-Response
Epidemiological data

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation
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Results IV. QMRA Indicator

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

QMRA-based

Indicator

High risk

Moderate risk

Low risk

Operational and quality data acquisition (SCADA)

Online surrogates of microorganisms

Development of online treatment performance indicators
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Crypto RW= 0.2 oocysts·L-1

(Peak event)

Results IV. QMRA Indicator

Crypto RW= 0.6 oocysts·L-1

(WWTP tertiary effluent)

Scenario analysis for Ter DWTP

Other pollutants

(DBPs, etc.)

Additional barrier

needed!
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Keypoints

Online QMRA indicators were developed

Treatment performance characterisation upon process knowledge

Alert DWTP managers about poor or suboptimal performance

Scenarios leading to increase the risk can be detected

Results IV. QMRA Indicator
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General Discussion

• Preoxidation

• DBP formation

• Microbiological safety

• Llobregat DWTP

• Ter DWTP

Objectives

Case studies
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General Discussion
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General Discussion

• Preoxidation

• DBP formation

• Microbiological safety

• Llobregat DWTP

• Ter DWTP

Objectives

Case studies
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General Discussion
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• New data-driven and knowledge-based

mathematical models were developed

• Expert knowledge was codified to 

systematise decision-making

• Real-time response to raw water

variations

• EDSS implemented at full-scale DWTPs

• Application at the control center

General conclusions
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• Diversity of DWTPs

• Limitations inherent to data-driven

models

Main limitations

• Consolidation of developed tools for 

managing treatment units

• Integrated management of the

Distribution network

Future work

• Non-regulated DBPs
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General Conclusions

“All models are wrong

but some are useful”

George E. P. Box
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