

Design and implementation of an Environmental Decision Support System for the control and management of Drinking Water Treatment Plants

> Industrial Doctoral Thesis | 5th November 2020 Lluís Godo Pla

Advisors: Dr. Hèctor Monclús, Dr. Fernando Valero

OUTLINE

1. Introduction

- 2. Objectives
- 3. Materials and methods
- 4. Results
 - 1. Results I
 - 2. Results II
 - 3. Results III
 - 4. Results IV
- 5. General discussions
- 6. General conclusions

Naturally occurring pollutants

- Organic Matter (NOM)
- Dissolved salts
- Microorganisms

Urban/ Industrial impacts

- Organic matter, NH₄⁺, NO₃⁻
- Pharmaceuticals

80%

• Faecal-related microorganisms

Drinking water treatment plant (DWTP)

Formation of disinfection by-products (DBPs)

Environmental Decision Support Systems (EDSS)

Environmental decision support systems

Environmental decision support systems

Hybrid models

THEN

END IF

ELSE

Environmental decision support systems

Environmental decision support systems

Citations per year (Web of Science)

Keywords: **"Environmental decision support system"** and **"Water"**

Implementation of EDSS at full-scale DWTPs: Challenges

Lack of generic EDSS

(Hamouda et al., 2009)

Reflect practical needs

(Hamouda et al., 2009; McIntosh et al., 2011; Raseman et al. 2017) Incorporation of uncertainty

(Raseman et al., 2017, Humphrey et al., 2017)

Motivation

- Challenges in operation of DWTPs
- Digitalisation of industry
- High amount of literature in wastewater treatment, fewer on drinking water.

Hypothesis

New models should be developed upon available knowledge and data from full-scale plants to address operational challenges

Main Objective

• To develop an EDSS to help DWTP managers in setting the most adequate operational set-points in real-time

Secondary objectives

- Preoxidation process
- DBPs formation through predictive models
- Supervision of the microbiological safety

OUTLINE

- 1. Introduction
- 2. Objectives

3. Materials and methods

- 4. Results
 - 1. Results I
 - 2. Results II
 - 3. Results III
 - 4. Results IV
- 5. Discussion
- 6. General conclusions

Materials and Methods

Materials and Methods

Llobregat DWTP Capacity: 3.2 m³·s⁻¹

- 1. Preoxidation
- 2. pH adjustment
- 3. Coagulation/focculation
- 4. Settling
- 5. Primary disinfection
- 6. Filtration
- 7. GAC filtration
- 8. Electrodialysis Reversal
- 9. Remineralisation
- 10. Secondary disinfection
- 11. Storage

Ter DWTP Capacity: 8 m³·s⁻¹

- 1. pH adjustment
- 2. Primary disinfection
- 3. Coagulation/focculation
- 4. Settling
- 5. GAC filtration
- 6. Secondary disinfection
- 7. Storage

Data sources

- Routine laboratory analysis
- Sensor data
- Operational data

- Data acquisition
- Data cleaning
- Model development
- Graphical user interfaces

OUTLINE

- 1. Introduction
- 2. Objectives
- 3. Materials and methods

4. Results

- 1. Results I
- 2. Results II
- 3. Results III
- 4. Results IV
- 5. Discussion
- 6. General conclusions

Results I

Predicting the oxidant demand in a surface water treatment plant: Model development and integration into an environmental decision support system.

Godo-Pla, L., Emiliano, P., Valero, F., Poch, M., Sin, G., Monclús, H., **2019**. Predicting the oxidant demand in full-scale drinking water treatment using an artificial neural network: Uncertainty and sensitivity analysis. Process Saf. Environ. Prot. 125, 317–327. <u>https://doi.org/10.1016/j.psep.2019.03.017</u>

Godo-Pla, L., Emiliano, P., González, S., Poch, M., Valero, F., Monclús, H., **2020**. Implementation of an environmental decision support system for controlling the pre-oxidation step at a full-scale drinking water treatment plant. Water Sci. Technol. 81 (8), 1778-1785. <u>https://doi.org/10.2166/wst.2020.142</u>

Potassium permanganate (KMnO₄)

- Iron and manganese
- Odour and tase compounds
- Disinfection by-products (DBP) precursors

To develop a model for predicting the oxidant dose

Data-driven model development

Data-driven model development

Implementation for decision support

Implementation for decision support

- Validation period
 (January-September 2019)
- Baseline values were modified based on experience, visual inspection and laboratory analyses.

Keypoints

New model for preoxidation process with MLP

Predicted error <0.15 mg/L

Uncertainty and sensitivity analysis

Integration of MLP and CBR models in an EDSS

Results II

Benchmarking empirical models for THMs formation in drinking water systems and integration into an EDSS

Godo-Pla, L., Emiliano, P., Poch, M., Valero, F., Monclús, H., **2020**. Benchmarking empirical models for THM formation in drinking water systems: An application for decision support in Barcelona, Spain. (Under review in Science of the Total Environment).

- 1. To develop a predictive model for THMs formation
- 2. To link EDR performance with THMs formation
- 3. Integration of models for real-time support in managing the DWTP

Predictive model for THMs formation

Data-driven model development

Historical Data 2019-2020 (N=573)

Predictive model for THMs formation

Log-scaled multiple linear regressions (MLR)
 Chowdhurry et al. (2009)

```
[THM] = a \cdot ([UV254]+1)^{b} \cdot [TOC]^{c} \cdot [D_{Cl}]^{d} \cdot ([Br]+1)^{e} \cdot T^{f} \cdot pH^{g} \cdot HRT^{h}
```

• Multi-layer perceptrons (MLPs) with different architectures Kulkarni et al. (2010)

Results II. Electrodialysis reversal

Predictive model for THMs formation

*Lequia ECO-INNOVATIVE Udg ENVIRONMENTAL Udg ATLL Ens d'Abastament d'Aigua Ter-Liobregat

Predictive model for THMs formation

Results II. Electrodialysis reversal

Linking EDR operation and THMs formation

Historical data 2015-2020

 $EC (R^2 = 0.88)$ EDR Removal (%) %Removal = 51.28 + Temp · 1.20

Removal characterization:

- EC, Bromide, TOC, UV₂₅₄
- Temperature dependent

Integration for real-time decision support

60

Keypoints

Benchmark of empirical models to predict THMs with fullscale data

Operation of EDR was linked with THMs formation at distribution network

Integration in an EDSS for a real-time management of EDR.

Feasibility of empirical models for operational purposes was demonstrated.

Results III

Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system

Godo-Pla, L., Rodríguez, J.J., Suquet, J., Emiliano, P., Valero, F., Poch, M., Monclús, H., **2020**. Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process Saf. Environ. Prot. 145, 63–70. <u>https://doi.org/10.1016/j.psep.2020.07.037</u>

Ter DWTP

Primary disinfection

- Disinfection along the treatment process
- Oxidation of odour-causing compounds

- ✓ Accumulated experience
- ✓ Few availability of data
- → Knowledge-based models
- ✓ Highly correlated

*lequia ATL d'Aigua Ter-Llobre

Fuzzy Inference System (FIS)

- Consolidate process knowldge ٠
- Data is difficult to obtain ٠

2)

Imprecision related to human classification ٠ using fuzzy sets

Experience, process knowledge Scientific basis

Design of the control system

Design of the control system

FIS₁

Objective:

Assess the THMs formation risk (THMFR) accordig to raw water quality and environmental conditions

Input variables: TOC_{RW}, T_{RW}

Inference System: (TOC_{RW}, $T_{RW} \rightarrow ClO_{2 \text{ Dose}}, Cl_{Free}$)

Controlled variables: $CIO_{2 Dose}, CI_{Free}$

Feed-back Fuzzy control

Results III. Primary disinfection

Design of the control system

FIS₂

Objective:

Adjust the operational set-points accordig to THMs concentration and operational conditions.

Input variables: THM_{ST.} HRT_{ST}

Inference System: (THM_{ST,} HRT_{ST}) \rightarrow (Δ ClO_{2 Dose}, Δ Cl_{Free})

Controlled variables: $\Delta ClO_{2 \text{ Dose}}, \Delta Cl_{\text{Free}}$

Design of the control system

Supervisor rule

Objective:

To limit the total amount of chemicals to avoid high levels of CIO_2^- and CIO_3^- .

Input variables:

 $CIO_{2 \text{ Dose}}, CI_{Free}$

Controlled variables: $CIO_{2 \text{ Dose}}, CI_{Free}$

Feed-back Fuzzy control

Results III. Primary disinfection

Full-scale implementation of fuzzy control system.

Positively Validated 85% of the time.

More systematic dosing of chemicals with the control system.

DBPs without exceeding threshold levels

Keypoints

A feedback and feedforward control system to control primary disinfection.

Process knowledge was modelled with a fuzzy inference system.

Implementation at full-scale was positively validated 85.5% of the time during 6 months.

DBPs concentration at the effluent at a safe range.

Results IV

Development of a key performance indicator based on quantitative microbial risk assessment

QMRA Quantitative Microbiological Risk Assessment

Site-specific data
Variabilities and uncertainties
Not applicable for real-time monitoring

1) Pathogen load2) Treatment units performance3) Dose-response4) Risk characterisation

Can we relate the pathogen load at DWTPs with online-available measures?

Real-time QMRA indicator

1) Pathogen load

2) Treatment units performance

rmance 3) Dose-response

4) Risk characterisation

Real-time QMRA indicator

1) Pathogen load2) Treatment units performance3) Dose-response4) Risk characterisation

Can we estimate the treatment units performance with online measures?

Chemical inactivation

- 1. Primary disinfection
- 2. Secondary disinfection

CSTR model

$$LRV_{Disinfection} = -\log(\frac{1}{1 + k_e \cdot c \cdot t_h})$$

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures?

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures?

I_{CF}

Physical removal

- 1. **Coagulation/focculation (CF)**
- 2. Rapid filtration (RF)

Triangular Distribution functions (Medema et al., 2006) **Online performance indicators**

Quality parameters

- ~ Average turbidity (Turb_{AVG})
- (0-1) Operational parameters
 - ~ Mean sludge age (MSA)

Real-time QMRA indicator

1) Pathogen load 2) Treatment units performance 3) Dose-response 4) Risk characterisation

Can we estimate the treatment units performance with online measures?

RF

Physical removal

- 1. Coagulation/focculation (CF)
- 2. Rapid filtration (RF)

Triangular Distribution functions

(Medema et al., 2006)

Online performance indicators

Quality parameters

- ~ Average turbidity (Turb_{AVG})
- (0-1) Operational parameters
 - ~ Mean flow rate (MFR)

1) Pathogen load

2) Treatment units performance

ce 3) Dose-response

4) Risk characterisation

1) Pathogen load

2) Treatment units performance

ce 3) Dose-response

4) Risk characterisation

Operational and quality data acquisition (SCADA)

Online surrogates of microorganisms

Development of online treatment performance indicators

Scenario analysis for Ter DWTP

Keypoints

Online QMRA indicators were developed

Treatment performance characterisation upon process knowledge

Alert DWTP managers about poor or suboptimal performance

Scenarios leading to increase the risk can be detected

OUTLINE

- 1. Introduction
- 2. Objectives
- 3. Materials and methods
- 4. Results
 - 1. Results I
 - 2. Results II
 - 3. Results III
 - 4. Results IV

5. General discussions

6. General conclusions

- Preoxidation
- DBP formation
- Microbiological safety

- Llobregat DWTP
- Ter DWTP

General Discussion

承 permanganat \times — Mòdul Pre-oxidació (permanganat potàssic) *legu**i**a hs d'Abastament UdG d'Aigun Ter Liabragat 6.00 Abs/m AbsUV 254 NTU 45.00 Terbolesa Incertesa model vs. Dades històriques °C 15.00 Temperatura 2.00 m^3/s Cabal Dosi Model: 0.84 ppm KMnO4 Freqüència Dosi Real: -- ppm KMnO4 -... Mn Residual (FS): 7.0 ppb Xarxes neuronais Cabal х, 0.5 1.5 0 Temperatura (X₂ Dosificació KMnO₄ (mg·L⁻¹) Dosificació KMnO₄ Σ Terbolesa (X. Llibreria Casos UV254 Incertesa Model Mn_{PS} > 15 ppb ? (-0.2) ppm KMnO₄ (\pm) Veure validacions

Objectives

- Preoxidation
- DBP formation
- Microbiological safety

- Llobregat DWTP
- Ter DWTP

- Preoxidation
- DBP formation
- Microbiological safety

- Llobregat DWTP
- Ter DWTP

General Discussion

Objectives

- Preoxidation
- DBP formation
- Microbiological safety

- Llobregat DWTP
- Ter DWTP

- Preoxidation
- DBP formation
- Microbiological safety

Case studies

Llobregat DWTP

• Ter DWTP

- Preoxidation
- DBP formation
- Microbiological safety

- Llobregat DWTP
- Ter DWTP

edss_precloracio					- 🗆 X
ETAP Ter Versió Beta 1.2. Mòdul Pre-d	lesinfecció	lequia	Ers c'Apasiament d'Aqua ler-skibregat		
Q (m3·s-1)	2.90			† D _{CIO2}	0.63 mg/L
T_EP (°C)	15.90			Cl _{lliure}	1.01 mg/L
TOC_EP (mg/L)	2.19			<u> </u>	
TRH_SD (h)	44.34			Ajustament clorits	
THM_SD (microg/L)	37.07			1 Ddoz 0	63 mg/L
El risc de formació THM, mesurat amb la Temperatura i el TOC és Mig. El factor supervisor que mesura la concentració de THM amb el temps de residència a dipòsits és Baix. La consigna de Clor lliure (OM) proposada és 1.18 ppm i dosificacio de ClO2 és 0.63 ppm. Per minimitzar clorits i clorats, es redueix la consigna de clor lliure a cambra de barreja per ser 1.0 ppm		Nivell d Adquisició de dad	Nivell supervisor	Ajustament Supervis	sor 2 0.72 mg/L 1.09 mg/L 1.09 mg/L 1.05 THM TOC _{EP}
	Model Re	al	Volum Q _{FP}		
Dosificació diòxid de clor	0.63 mg/L 0.6	i mg/L			
Consigna Clor Lliure res. OM	1.01 mg/L 1.0	10 mg/L			

- Preoxidation
- DBP formation
- Microbiological safety

Case studies

Llobregat DWTP

• Ter DWTP

General Discussion

OUTLINE

- 1. Introduction
- 2. Objectives
- 3. Materials and methods
- 4. Results
 - 1. Results I
 - 2. Results II
 - 3. Results III
 - 4. Results IV
- 5. General discussions

6. General conclusions

General conclusions

- New data-driven and knowledge-based mathematical models were developed
- Expert knowledge was codified to systematise decision-making
- Real-time response to raw water variations
- EDSS implemented at full-scale DWTPs
- Application at the control center

Main limitations

- Diversity of DWTPs
- Limitations inherent to data-driven models
- Non-regulated DBPs

Future work

- Consolidation of developed tools for managing treatment units
- Integrated management of the Distribution network

"All models are wrong but some are useful"

George E. P. Box

Thanks for your attention!!!

Acknowledgements

Design and implementation of an Environmental Decision Support System for the control and management of Drinking Water Treatment Plants

> Doctoral Thesis | 5th November 2020 Lluís Godo Pla

Advisors: Dr. Hèctor Monclús, Dr. Fernando Valero

