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Summary 
 

Drinking water treatment plants (DWTPs) face changes in raw water quality due to 

anthropogenic pressure and climate change. To cope with that, DWTPs’ managers adjust 

their treatment units (such as pre-oxidation, coagulation, disinfection…) to produce high 

quality and safe drinking water at all times. The decision-making involved in this process 

takes several factors into consideration, including environmental, economic and health 

factors. Regarding the latter, it is expected that stricter regulations regarding 

disinfection by-products (DBPs) will increase even more the pressure on this decision-

making.  

Under the paradigm of digitalisation, drinking water utilities are shifting towards building 

intelligent control systems to aid humans in facing multi-parametric decisions. Remote 

sensing generates huge databases that, together with the accumulated experience of 

process operators and managers, allow the development of models that predict water 

quality parameters and recommend adequate operational set-points. In this regard, 

environmental decision support systems (EDSSs) are software tools that integrate 

different kind of models with the goal of systematising and optimising the decision-

making and reducing the time in which a decision in taken. 

The present thesis aims at developing an EDSS to face the main operational challenges 

at DWTPs by providing treatment recommendations in a real-time basis. For this 

purpose, two full-scale DWTPs (Llobregat and Ter) have been considered as case studies 

and their needs and processes have been examined. 

The control of the pre-oxidation process at Llobregat DWTP has been modelled using 

artificial neural networks (ANNs) (Chapter 4). To this end, several ANNs and linear 

regression models have been compared and a comprehensive methodology for 

parameter estimation, uncertainty and sensitivity analysis has been followed. The 

resulting model has been integrated in a EDSS for setting the potassium permanganate 

dosing rate. In parallel, an approach based on case-based reasoning model has been 

developed for the same process. The integration of these two models in an EDSS allowed 

to contrast the uncertainty of the developed ANN model with the imprecision related to 

human decision-making in past situations given similar raw water quality.  

To tackle the formation of DBPs issue, two studies have been conducted to explore the 

consequences of the management of two treatment units on the formation of 

trihalomethanes (THMs). In the first study, THMs formation models have been 

compared and calibrated with field-scale data of Llobregat DWTP. Then, the operation 



 

xviii 

of an advanced treatment consisting in electrodialysis reversal has been modelled and 

process knowledge has been incorporated to assess the quality of water at two critical 

points of the distribution network (Chapter 5). 

In the second study, in Chapter 6 a fuzzy inference system has been developed for Ter 

DWTP to tackle the DBPs formation as a result of the primary disinfection process. This 

process consisted of a sequential dose of sodium hypochlorite and chlorine dioxide. 

Results from this study have been validated at the full-scale plant with positive 

validations 85.6% of the time during 6 months. 

In parallel, to supervise the overall performance of the plant in terms of microbiological 

safety, a key process indicator (KPI) was developed (Chapter 7). The framework for 

quantitative microbiological risk assessment was adapted to real-time approximating 

some risk-based metrics such as the disability adjusted life years (DALY). This KPI was 

integrated in a Supervisory Control and Data Acquisition (SCADA) system and to monitor 

the whole performance of the plant to avoid pathogen-related risks. The presented 

system is also intended to alert the users about the consequences of certain operation 

practices or treatment failures. 

As a summary, the main contribution of this thesis is to have addressed, modelled and 

analysed different important challenges regarding variations of raw water quality, 

formation of disinfection by products and microbiological safety of drinking water by 

means of developing a variety of intelligent decision support tools. It is worth mentioning 

that all the developed tools have been integrated in an EDSS and implemented at full-

scale DWTPs, where they have been validated by their users.  



 

xix 

Resum 
 

Les estacions de tractament d’aigua potable (DWTPs) afronten canvis en la qualitat de 

l’aigua a causa de la pressió antropogènica i els efectes del canvi climàtic. Per afrontar-

ho, els gestors de les DWTPs ajusten les seves operacions unitàries (com la pre-oxidació, 

la coagulació, desinfecció…) per tal de produir aigua potable d’alta qualitat en tot 

moment. La presa de decisions implicada en aquest procés té en compte diversos 

factors, inclosos els factors mediambientals, econòmics i de salut. Tanmateix, també 

s’espera que regulacions més estrictes en matèria de subproductes de desinfecció 

(DBPs) augmentin encara més la pressió sobre aquesta gestió. 

Sota el paradigma de la digitalització, les gestores d’aigua s’orienten cap a la creació de 

sistemes de control intel·ligents per ajudar els personal tècnic a afrontar decisions 

multiparamètriques. La sensorització dels processos de tractament generen una enorme 

base de dades que, juntament amb l’experiència acumulada del personal tècnic i dels 

gestors de planta, pot permetre el desenvolupament de models que prediuen 

paràmetres de qualitat de l’aigua i recomanen consignes d’operació per ajustar 

adequadament el procés de tractament d’aigua. En aquest sentit, els sistemes d’ajut a 

la decisió ambientals (EDSSs) són eines informàtiques que integren diferents tipus de 

models matemàtics amb l'objectiu de sistematitzar i optimitzar la presa de decisions i 

reduir el temps en què aquestes es prenen. 

Aquesta tesi té com a objectiu desenvolupar un SADA per afrontar els principals reptes 

operacionals en les DWTPs que utilitzen aigües superficials proporcionant 

recomanacions sobre tractament a temps real. Per a aquest propòsit, es van considerar 

dos DWTPs com a casos d’estudi i s’han analitzat els seus processos i necessitats. 

El control de l’etapa de pre-oxidació a la DWTP del Llobregat es va modelar mitjançant 

xarxes neuronals artificials (ANNs) (Capítol 4). Per aquest fi, es van comparar 

funcionament de ANNs amb models de regressió lineal múltiple i es va seguir una 

metodologia exhaustiva per a l'estimació de paràmetres i anàlisi d'incertesa. El model 

resultant es va integrar en un EDSS per ajudar a decidir la dosificació de permanganat 

potàssic. En paral·lel, es va desenvolupar un model de raonament basat en casos (CBR) 

pel mateix procés. La integració d’aquests dos models en un EDSS va permetre 

contrastar la incertesa del model de ANNs desenvolupat amb la imprecisió relacionada 

amb la presa de decisions en situacions passades donada pel CBR. Aquesta integració va 
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permetre que l’usuari agafés confiança amb els sistemes de control avançats, fet 

indispensable per la correcta implementació i validació dels EDSSs. 

Per abordar la formació de DBPs, es van realitzar dos estudis per analitzar les 

conseqüències de la gestió de dues operacions unitàries en la formació de trihalometans 

(THMs). En el primer estudi, es van comparar i calibrar els models de formació de THMs 

amb dades de camp de la DWTP del Llobregat. A continuació, es va modelar l’operació 

del tractament avançat que consisteix en una electrodiàlisi reversible i es van incorporar 

els coneixements de procés per avaluar la qualitat de l’aigua en dos punts crítics de la 

xarxa de distribució (capítol 5). 

En el segon estudi, al capítol 6, es va desenvolupar un sistema d'inferència difusa a la 

DWTP del Ter per gestionar la formació de DBPs com a resultat de l’etapa de desinfecció 

primària. Aquesta etapa consisteix en una dosi combinada d'hipoclorit sòdic i diòxid de 

clor. Els resultats d’aquest estudi es van validar a la planta a escala real amb validacions 

positives el 85,6% del temps durant 6 mesos. 

Paral·lelament, es va desenvolupar un key performance indicator (KPI) per supervisar el 

rendiment global de la planta en termes de seguretat microbiològica (capítol 7). La 

metodologia d’avaluació de risc microbiològic es va adaptar per a fer una aproximació 

en temps real d’algunes mètriques basades en risc, com ara els disability adjusted life-

years (DALY). Aquest KPI es va integrar al sistema de SCADA per supervisar tot el 

rendiment de la planta per evitar riscos relacionats amb els possibles patògens presents 

a l’aigua d’entrada i també sobre certes pràctiques en la operació de la planta. 

En general, en aquesta tesi s’han analitzat i proposat solucions pels reptes originats per 

les variacions de la qualitat, la formació de la DBPs i la seguretat microbiològica de l’aigua 

potable. Totes les eines desenvolupades han estat integrades en un EDSS i 

implementades a escala real, on han estat validades pels propis usuaris. 
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Resumen 
 

Las estaciones de tratamiento de agua potable (DWTPs) afrontan cambios en la calidad 

del agua debido a la presión antropogénica y los efectos del cambio climático. Para 

afrontarlo, los gestores de las DWTPs ajustan sus operaciones unitarias (como la pre-

oxidación, la coagulación, desinfección…) para producir agua potable de alta calidad en 

todo momento. La toma de decisiones implicada en este proceso tiene en cuenta 

diversos factores, incluidos los factores medioambientales, económicos y de salud. Sin 

embargo, también se espera que regulaciones más estrictas en materia de subproductos 

de desinfección (DBPs) aumenten aún más la presión sobre esta gestión. 

Bajo el paradigma de la digitalización, las gestoras de agua se orientan hacia la creación 

de sistemas de control inteligentes para ayudar al personal técnico a afrontar decisiones 

multiparamétricas. La sensorización en los procesos de tratamiento genera una enorme 

base de datos que, junto con la experiencia acumulada del personal técnico y de los 

gestores de planta, permite el desarrollo de modelos que pueden predecir parámetros 

de calidad del agua y recomendar consignas de operación para ajustar adecuadamente 

el proceso de tratamiento de agua. En este sentido, los sistemas de ayuda a la decisión 

ambientales (EDSSs) son herramientas informáticas que integran diferentes tipos de 

modelos matemáticos con el objetivo de sistematizar y optimizar la toma de decisiones 

y reducir el tiempo en que éstas son tomadas. 

Esta tesis tiene como objetivo desarrollar un EDSS para afrontar los principales retos 

operacionales en las DWTPs que utilizan aguas superficiales proporcionando 

recomendaciones sobre tratamiento a tiempo real. Para este propósito, se consideraron 

dos DWTPs como casos de estudio y se han analizado sus procesos y necesidades. 

El control de la etapa de pre-oxidación en la DWTP del Llobregat se modelizó mediante 

redes neuronales artificiales (ANNs) (capítulo 4). Para tal fin, se comparó el 

funcionamiento de ANNs con modelos de regresión lineal múltiple y se siguió una 

metodología exhaustiva para la estimación de parámetros y análisis de incertidumbre y 

sensibilidad. El modelo resultante se integró en un SADA para ayudar a decidir la 

dosificación de permanganato potásico. En paralelo, se desarrolló un modelo de 

razonamiento basado en casos (CBR) para el mismo proceso. La integración de estos dos 

modelos en un EDSS permitió contrastar la incertidumbre del modelo de ANNs con la 

imprecisión relacionada con la toma de decisiones en situaciones pasadas dada por el 

modelo de CBR. Esta integración permitió que el usuario tomara confianza con los 
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sistemas de control avanzados, hecho indispensable para la correcta implementación y 

validación de los EDSS. 

Para abordar la formación de DBPs, se realizaron dos estudios para analizar las 

consecuencias de la gestión de dos operaciones unitarias en la formación de 

trihalometanos (THMs). En el primer estudio, se compararon y calibrar los modelos de 

formación de THMs con datos de campo de la ETAP del Llobregat. A continuación, se 

modelizó la operación del tratamiento avanzado que consiste en una electrodiálisis 

reversible y se incorporaron los conocimientos de proceso para evaluar la calidad del 

agua en dos puntos críticos de la red de distribución (capítulo 5). 

En el segundo estudio, en el capítulo 6, se desarrolló un sistema de reglas basado en 

lógica difusa en la DWTP del Ter para gestionar la formación de DBPs como resultado de 

la etapa de desinfección primaria. Esta etapa consiste en una dosificación combinada de 

hipoclorito sódico y dióxido de cloro. Los resultados de este estudio se validaron en la 

ETAP a escala real con validaciones positivas el 85,6% del tiempo durante 6 meses. 

Paralelamente, se desarrolló un key performance indicator (KPI) para supervisar el 

rendimiento global de la planta en términos de seguridad microbiológica (capítulo 7). La 

metodología de evaluación de riesgo microbiológico cuantitativo se adaptó para hacer 

una aproximación en tiempo real de algunas métricas basadas en riesgo, como los 

disability adjusted life-years (DALY). Este KPI se integró al sistema de SCADA y puede 

supervisar todo el rendimiento de la planta para evitar riesgos relacionados con los 

patógenos y con ciertas prácticas de operación. 

En general, en esta tesis se han analizado y propuesto soluciones para los retos 

originados por las variaciones de la calidad, la formación de los DBPs y la seguridad 

microbiológica del agua potable. Todas las herramientas desarrolladas han sido 

integradas en un EDSS e implementadas a escala real, dónde han sido validadas por los 

propios usuarios. 
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1.1. Drinking water treatment plants 

 

Drinking water treatment plants (DWTPs) are tasked with providing safe water to the 

inhabitants. They consist of a series of physical and chemical barriers against pathogens 

and hazardous compounds present in raw water. 

The degree to which water is treated depends largely on the quality of the source water. 

In Spain, most of urban areas are supplied with DWTPs treating surface waters. The 

chemical and microbiological composition of surface waters depends on the catchment 

characteristics and are usually subject to contamination from urban, industrial and 

agricultural systems. In this regard, natural organic matter (NOM), dissolved salts and 

microbial hazards are the main concerns for surface water DWTPs. 

Some common treatment operations at surface water DWTPs include preoxidation, 

coagulation/flocculation, settling, filtration and disinfection (Figure 1). 

 

 

Figure 1. Typical surface water DWTP scheme. 1: Source water catchment; 2: 
Preoxidation; 3: Coagulation/flocculation; 4: Sedimentation; 5: Rapid filtration; 6: 
Disinfection and storage. 

In the preoxidation process, an oxidant is added to water to oxidise a wide range of 

compounds and/or to provide a first chemical barrier against pathogens. Several 

oxidants can be used in this process, such as potassium permanganate, chlorine, chlorine 

dioxide and ozone. The election of the chemical will depend on the raw water 

characteristics and the formation of disinfection by-products. In the coagulation process, 

a coagulant is added to water to destabilize negatively-charged colloidal particles such 

as humic acids. In this process, organic and inorganic particles are removed from raw 

water. The most common used chemicals are iron and aluminium-based salts. 

Flocculants are also added to aid in the formation and agglomeration of particles that 

are big enough to settle by gravity later in the sedimentation process. The remaining 

particulates in water are removed in the filtration process by different physical 
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phenomena such as straining and adherence to the filter grains or to previously 

deposited particles (Crittenden et al., 2012). Several filtration media can be used in this 

process such as sand, gravel or granular activated carbon (GAC). Depending on the water 

quality, an additional treatment step might be necessary to remove chemicals that are 

not removed by the conventional treatment. Membrane technologies such as reverse 

osmosis (RO) or electrodialysis reversal (EDR) can further remove ionic species such as 

Bromides. Finally, a disinfectant is usually added to water to ensure the microbiological 

safety of water and to avoid recontamination along the supply network. Effluent of 

DWTPs is conveyed through storage tanks and distributed through the supply network 

before it is consumed at the tap. 

1.1.1. Disinfection by-products 

The discovery of hazardous disinfection by-products (DBPs) during the disinfection 

process has moved the management of drinking water treatment towards the 

elimination of DBPs precursors and finding alternative disinfectants. Chlorine has been 

used since the early stages of water treatment for its properties as a strong oxidant for 

inactivation of bacteria and viruses and for maintaining a residual disinfectant in water, 

but it reacts with organic matter and to form halogenated DBPs such as total 

trihalomethanes (THMs) and haloacetic acids (HAAs).  

THMs refer to the sum of four compounds: Chloroform, bromodichloromethane, 

dibromochloromethane and bromoform. Even the quality standards usually refer to the 

sum of them, the different compounds present different toxicity effects. For example, 

brominated-THMs have been particularly regarded for having a potential link with 

adverse reproductive outcomes (World Health Organization, 2017). Therefore, the 

proportion of these compounds in the total sum of THMs will also play a role in the 

toxicity of drinking water. THMs were the first DBPs to be identified as possible agents 

in drinking water causing bladder cancer were first regulated in the USA since 1979. 

Probably because chlorination is the most widely used disinfection technique, whilst 

other DBPs have been studied, the focus has been on carbonaceous species and THMs 

in particular (Golea et al., 2017). THMs are regulated in most European countries at 100 

μg·L-1. On the other hand, are included in some regulations but are still not included in 

the European drinking water directive (98/83/CE, 1998). Anyhow, a revision of this 

directive dating from 2018 has proposed a limit of 80 μg·L-1 in drinking water. At the 

regulation level, HAAs are usually regarded as the sum of five compounds: 

monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid 

and dibromoacetic acid. 
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Chlorine is still widely used as disinfectant but other chemicals such as chlorine dioxide, 

chloramines and ozone are also used at the end of the drinking water treatment process. 

Chlorine dioxide is also highly effective against waterborn pathogens and does not 

generate as much organic DBPs as chlorine. On the other hand, this disinfectant needs 

to be produced on-site and it generates chlorites, which are unregulated DBPs. As 

regards to chloramines, they generate lesser amount of halogenated DBPs (THMs and 

HAAs) than chlorine, but they form nitrogenous DBPs such as N-nitrosodimethylamine 

(NDMA) (Choi and Valentine, 2002).  

Ozone is a very strong oxidant, but because of its instability, it cannot produce a 

disinfectant residual along distribution systems (Singer, 1994). Therefore, it is mainly 

used in conjunction with chloramines or other disinfectants to ensure that a residual is 

present in these systems. Ozone reacts with NOM to form organic DBPs such as 

aldehydes and also with bromide ion to form bromate (WHO, 2000).  The presence of 

bromide and/or iodide in water can shift the formation of DBPs to iodinated or 

brominated DBPs.  

Overall, the formation of DBPs is influenced by several factors such as NOM, 

temperature, presence of inorganic salts and pH, among others (Chang et al., 2000; 

Delpla et al., 2009; Nikolaou et al., 2004). The presence of precursors in source water 

can be related to natural phenomena but also to human activities, and their 

concentration can suffer from seasonal variations or peaks that require adjustments on 

the water treatment. For example, the changes in land use, climate change and increase 

of population can increase NOM concentration in surface waters (Cool et al., 2019). 

The regulation of DBPs such as THMs in national regulations (RD 140/2003) and 

international directives (98/83/CE, 1998) has motivated the addition of new 

technologies in the drinking water treatment process such as membrane-based 

technologies, GAC filters or advanced oxidation processes, among others (Crittenden et 

al., 2012). These technologies are aimed to minimise the formation of DBPs by removing 

its precursors. As more information on DBPs formation and their toxicological effects in 

humans, regulation of drinking water is becoming stricter and therefore, managing the 

treatment process becomes more challenging. 
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1.1.2. Health-based targets 

 

As we have seen in this section, DWTPs rely on multiple barriers to ensure the 

microbiological and chemical safety of water through various treatment units. Several 

guidelines have been established for ensuring an adequate removal of pathogens along 

the treatment process and meet health-based targets at both national and international 

level (USEPA, 2003, 1998; World Health Organization, 2017, 2016). 

Four types of health-based targets are defined for measuring the health, quality and 

performance objectives of a DWTP based on risk assessments of waterborne hazards: 

Health outcome targets, Water quality targets, performance targets and specified 

technology targets (World Health Organization, 2017). 

Health outcomes target are a quantitative measure of risk associated with a waterborne 

hazard, and represent tolerable burdens of disease. Some commonly used metrics are 

the annual probability of infection and the disability-adjusted life years (DALY). The 

World Health Organisation guidelines define a tolerable burden of disease of 10-6 DALY 

per person per year. Based on this threshold, the rest of health-based targets (such as 

quality, performance and specified technology targets) are derived. 

Probabilistic methods like quantitative microbiological risk assessment (QMRA) are used 

at DWTPs to assist in decision-making for managing waterborne microbial hazards and 

to identify possible scenarios leading to non-acceptable risks for the population. 

 

1.2. Operational challenges and digitalisation of DWTPs 

 

DWTP managers have to struggle between operating at a sustainable cost, but without 

compromising the safety of drinking water. In this sense, in an effort to minimise DBPs, 

it is clearly stated that the microbiological safety must not be compromised (World 

Health Organization, 2017). In addition, utilities are subject to other restrictions such as 

limited budget, stringent regulations, increasing operational costs, variation of raw 

water quality, among others. Regarding the latter, global change is expected to affect 

negatively the quality of drinking water. The increase in temperature and rainfalls is 

expected to have an effect on water quality parameters such as organic matter, 

micropollutants and pathogens (Delpla et al., 2009). The complexity of DWTP 

management that is faced in a daily-basis is illustrated in Figure 2. 
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Figure 2. Scheme reflecting the diversity of factors that influence decision-making at 
operating DWTP 

The formation of DBPs is largely dependent on the quality of raw water, and this can 

present huge quality variations over the year at surface water DWTPs due to seasonal or 

punctual events altering the quality of water. To cope with this, several water quality 

parameters are routinely monitored at the inlet of DWTPs to characterise physical, 

chemical and microbiological quality of water.  

Specially in Mediterranean catchments, characterised by intermittent flows and for 

having densely urbanised areas, water at the inlet of DWTPs can be affected by municipal 

and/or industrial discharges that may happen in the upper part of the basin. In Spain, 

whereas direct and indirect potable reuse is not permitted by the national regulation, de 

facto or “incidental” reuse of wastewater may occur in some catchments. This fact 

increases the complexity of raw water to be treated by DWTPs, which might present 

anthropogenic contamination (mainly organic matter, ammonia, nitrates, 

pharmaceuticals and faecal-related microorganisms) apart from the typical surface 

water contamination. In a study conducted by Weisman et al. (2019), the effect of de 

facto reuse on a surface water catchment was investigated and a correlation between 

the formation of THMs and HAAs and 1% level of de facto reuse was found. In Spain, 

rivers such as Llobregat have been reported to show high levels of de facto reuse (Kuster 

et al., 2008; Mujeriego et al., 2017), having all the problematics associated mentioned 

above. Therefore, when DWTPs face important changes in short periods of time, 

adjusting and optimising the operational parameters becomes critical. 
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Usually, the different treatment units of a DWTP have to be adequately adjusted in order 

that the overall performance is optimised. For example, an adequate dosing of oxidant 

at the inlet of a DWTP (e.g. potassium permanganate) will result in a more efficient 

removal of NOM, Iron and manganese at the posterior coagulation/flocculation stage. 

However, an overdose of this chemical would result in a residual of manganese in water, 

that gives a pinkish colour to water and that is corrosive for the pipes. Alternatively, if 

chlorine or chlorine dioxide was used in this process, an overdose at the peroxidation 

step would generate high concentrations of DBPs before treatment. Another example is 

at the coagulation step: Whereas a low dosage of chemical leads to insufficient NOM 

and particulate matter removal, an overdose of it would lead to artificial sludge creation 

and increase of the residual aluminium concentration in water (apart from a higher 

chemical consumption).  

At the disinfection process, while adding to little disinfectant would increase the risk of 

microbial (re)contamination in product water, adding to much disinfectant would lead 

to intolerable levels of disinfectant residual in tap water. In this latter case, apart from 

generating taste and odour problems of the product water, but this concentration is 

regulated to be within a defined range. 

Some other trade-offs in setting the adequate operational set-point at DWTPs are 

summarised in Table 1. 
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Table 1. Trade-offs in setting operational set-points for different processes at 
DWTPs 

Process Operational 
set-point 

Effects of insufficient 
treatment 

Effects of overtreatment 

pH Adjustment Chemical 
dosing 

Formation of DBPs 
Hindered 
coagulation/flocculation 

Formation of DBPs 
Cost of chemicals 

Pre-oxidation Chemical 
dosing 

Non-sufficient removal 
of pollutants 

Formation of DBPs 
Increase of residual 
concentration 
Cost of chemicals 

Coagulation Chemical 
dosing 
Sludge age 
HRT 

Non-sufficient removal 
of pollutants 

Increase of residual 
concentration 
Cost of chemicals 
Cost of artificial sludge 
generation 

Flocculation Chemical 
dosing 

Non-sufficient removal 
of pollutants 

Increase of residual 
concentration 
Cost of chemical 

Membranes Modules in 
operation 

Non-sufficient removal 
of pollutants 

Cost of operation 

Disinfection Chemical 
dosing 

Risk of microbial 
recontamination 

Formation of DBPs 
Cost of chemicals 
Too much disinfectant 
residual in product water 

 

Drinking water processes are highly nonlinear and their control go beyond the use of PiD 

controllers. Instead, operational set-points are typically decided upon previous 

experience of DWTP users in a specific system. Remote sensing instruments allow a real-

time monitoring of water quality, and this can be used for quickly detect and respond to 

water quality changes (USEPA, 2016). The digitalisation of industry has increased the 

level of sensors, and this allows the development of predictive tools for automated 

decision-making and thus, increasing the resilience of DWTPs operation. Therefore, an 

increasing amount of data is becoming available and data analytics tools can be 

developed upon them to increase the resilience of these facilities. 

The degradation trend of water quality is a factor that outlines the need for predictive 

tools such as models and decision support systems (Delpla et al., 2009; Raseman et al., 

2017). In addition, the shift work of DWTP operators may also lead to problems in 
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homogenising criteria to unify strategies and optimise operational parameters. 

Therefore, in the framework of an increasing pressure on water systems, several 

modelling approaches can be applied using the accumulated knowledge and data from 

full-scale facilities and be integrated into Environmental Decision Support Systems 

(EDSS), aiding in the daily operational decision-making (Corominas et al., 2017; Hamouda 

et al., 2009; Poch et al., 2004).  

Integrating modern technologies like EDSS into industrial processes is in alignment with 

the “Industry 4.0” concept and can bring managerial benefits such as virtualization, real-

time capability and service orientation among others (Kamble et al., 2018; Stock et al., 

2018). 

 

1.3. Environmental Decision Support Systems 

Environmental decision support systems (EDSSs) are information systems aimed to 

reduce the time in which a decision is taken, as well as to ameliorate the consistency and 

quality of them (Cortés et al., 2000; Poch et al., 2004). EDSS are systems with the 

objective of delivering contested problems in a structured way, which aims to provide 

the user with a better understanding of the problem and augment their decision capacity 

on them (McIntosh et al., 2011). 

EDSSs have found successful applications in the water and wastewater treatment field 

(Hamouda et al., 2009; Raseman et al., 2017; Zhang et al., 2014). Depending on the level 

of decision the EDSS is designed, their applications can be divided into strategic decisions 

or for operational or control purposes. Some applications include the exploration of 

water and wastewater treatment alternatives (Castillo et al., 2016; Comas et al., 2004) 

and the operation of specific treatment units (Raseman et al., 2017). Even some common 

steps are followed for all EDSSs, the mathematical models included in them can vary 

whether they are oriented to the selection of alternatives or to aid in operation or 

control. This thesis is focused on EDSS for operational control. 

Generally, the development of an EDSS can be divided into the following stages: 1) 

Analysis of the problem; 2) Data and knowledge acquisition; 3) Cognitive analysis; 4) 

Model selection; 5) Integration and implementation. Processes involved in these stages 

have been detailed in the literature (Poch et al., 2004) and are summarised in Figure 3. 
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Figure 3. Schematic of steps followed for the development of an EDSS. 

At the first stage of development, the objectives, expectations and limitations of the 

EDSS are clearly stated. In this initial phase is key to understand the stakeholders and 

decision-maker needs, and clearly define the purpose of the tool. Some questions that 

need to be answered in this stage include which decisions are made at the plant, which 

stake-holders are taking part in these decisions, and at which time-basis. Additionally, 

the working mechanisms between developers and practitioners are also established 

(McIntosh et al., 2011).  

Once the objectives of the EDSS have been stated, the acquisition of knowledge from 

experts and the gathering of data that will be used in further steps to develop models is 

done. Further on, a cognitive analysis on all this information is done. Applying pre-
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processing techniques to data allows to have quality data and at the same time, to avoid 

propagation of errors in data-driven models that may lead to erroneous decision-making 

based on them (Gibert et al. 2016). At the same time, additional interviews with experts 

to gain specific knowledge on certain areas can be done. 

The choose of mathematical models that best suit the decision-making problem is of 

paramount importance. These can be mainly classified in mechanistic (or physically-

based) models, statistical and artificial intelligence models (Poch et al., 2004; Raseman 

et al., 2017). An appropriate model type has to be selected according to their application, 

the types of data available and the level of uncertainty treatment among others (Kelly 

et al., 2013). Developing models that are interpretable and/or able to communicate the 

conceptual path the system uses to reach its recommendations avoids the black box 

perception of the system and may promote successful implementations of EDSSs 

(Walling and Vaneeckhaute, 2020). 

Finally, the developed models have to be integrated into a functional structure and 

implemented into the computer systems in order to be executed and consulted. EDSSs 

are generally structured by a data acquisition level, where all data is gathered and 

processed (e.g. from DWTP database); a control level, where mathematical models are 

fed with data and provide an output for the response variable; and supervisor level, 

which contains expert rules or mathematical models that evaluate the answer given by 

the control level. The general structure of an EDSS is shown in Figure 4. 
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Figure 4. Generic EDSS structure 

Once the tool has been implemented, it has to be validated by the domain experts. In 

the validation phase, the performance of the model is assessed and checked whether it 

is the expected one according to the initial objectives. This process can be iterative, as 

new problems and challenges can emerge as the EDSS is developed. The success of the 

EDSS and the end-quality of it will depend on how these challenges are faced during all 

stages of EDSS development (Walling and Vaneeckhaute, 2020). 

 

1.3.1. Model selection for drinking water treatment. 

The mathematical models are the main component of the EDSS. They should have the 

ability to reproduce the input-output relationship of a certain process based on previous 

knowledge (knowledge-based models) or through data-driven approaches and 

represent the underlying system dynamics between variables (Gass, 1983; Humphrey et 

al., 2017; Wu et al., 2014). The selection of the type of model will mainly depend on the 

available knowledge and information of a certain process. In a study conducted by Gibert 

et al. (2018), a conceptual framework of data mining techniques for solving 

environmental problems is described, considering the structure of the data and the 

problem goals. Based on this study and focusing on the selection of predictive models, 

the framework in Figure 5 can be followed to select an adequate model. 
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.  

Figure 5. Choose of mathematical model for prediction 

According to Figure 5, physically-based (or mechanistic) models are used when there is 

no qualitative neither quantitative data of the process. These models are based on 

physical and chemical principles, such as mass balances and kinetic models, and are 

frequently used for design applications in the water treatment literature (Raseman et 

al., 2017). 

When the response of the model is rather qualitative, knowledge-based models such as 

fuzzy inference systems (FIS) or decision trees can be used. This models are useful where 

there is process knowledge that can be consolidated and/or the acquisition of data is 

difficult. 

Last, when there is a numerical response and the availability of quantitative data allows 

it, data-driven models can be selected. These models search for relationships between 

inputs (or exploratory variables) and outputs (response variables) through algebraic 

equations. The terms of the equation are usually calibrated through an error 

minimisation algorithm such as mean-squares, comparing the output of the model with 

the observed values. 
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1.3.2. Data-driven models. 

Statistical models refer to the set of tools that aim to learn relationships and structures 

from data and have been used for risk assessment and as predictive models in water 

treatment. Most predictive tools are developed using supervised learning techniques. In 

these type of models, an output is predicted from one or more inputs (James et al., 

2013). Supervised techniques include simple (or multiple) linear regression, logistic 

regression, regression trees… and a broad range of other techniques. For example, Most 

of DBPs models reported in the literature are empirically modelled multiple linear 

regressions (MLR) based on a log-linear power functions, by regressing each one of the 

water quality parameters influencing DBPs formation (Amy et al., 1998; Chowdhury et 

al., 2009; Golfinopoulos et al., 1998; Lin et al., 2018; Platikanov et al., 2007). On the other 

hand, unsupervised techniques find structures or relationships in data, but with no 

reference output. Some examples can be principal component analysis, use for 

dimensionality reduction of large datasets or clustering techniques (Gibert et al., 2010). 

There are also data-driven systems from the Artificial Intelligence field, and the most 

popular are artificial neural networks (ANN). ANN have been investigated in the water 

and wastewater treatment field and became popular in middle 80s (Boger, 1992), but 

the raise of machine learning, the advances in computational capacity and the amount 

of deployed sensors that generate real-time data have led to a re-birth of ANNs during 

the last decade.  

The ANN development process can be divided into the following steps: 1) Choice of 

potential inputs, 2) Data processing, 3) Input Selection, 4) Data division, 5) Selection of 

model architecture, 6) Optimisation of model parameters and 7) Model validation 

(Maier et al., 2010), even this process can be generalised to data-driven techniques. To 

homogenize criteria and guarantee the reproducibility and scientific reporting of these 

models, some general frameworks and protocols have been proposed for adequately 

addressing each one of the ANN development steps (Baxter et al., 2002; Maier et al., 

2010; Wu et al., 2014). Other studies have reviewed the methodologies used for 

addressing specific steps of ANN development in the water resources field such as inputs 

selection (Bowden et al., 2005), data division (Bowden, 2002) or validation step 

(Humphrey et al., 2017). 

Among different possible architectures, multi-layer perceptrons (MLPs) are amongst the 

most used ANN in the prediction of water quality parameters (Wu et al., 2014). A 

structure for a single hidden layer MLP is presented in Figure 6. MLPs have minimum 

three layers: Input layer, where each node represents one input variable; Hidden layer, 

where each input is weighted and connected with non-linear activated function 
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(sigmoid) and the Output layer, where the output is calculated from the result of the 

previous layer nodes through a linear transfer function.  

 

 

Figure 6. General structure of a multi-layer perceptron.  

The ability of to detect non-linear complex relationships between data has motivated 

successful applications of ANN in the drinking water field. The major use of ANNs have 

been in determining the optimal coagulant dosage from sudden changes in raw water 

characteristics (like pH, turbidity, alkalinity or temperature) (Baxter et al., 1999; Griffiths 

and Andrews, 2011; Haghiri et al., 2017; Kennedy et al., 2015; Maier et al., 2004; Tomperi 

et al., 2013; Wu and Lo, 2008). The main motivation for this is the elimination of routinely 

jar-testing of raw water to calculate the optimum coagulant dosage, which is time 

consuming. 

The forecasting of water quality in distribution system is an area that has also received 

attention from researchers. For example, the studies conducted in May et al. (2008) and 

Wu et al. (2011) provide applications for forecasting disinfectant residuals in distribution 

systems. The methodology used for developing ANNs for prediction of water resources 

variables was reviewed in Maier et al. (2010). 

Other treatment units have received lesser attention, like some ANN applications 

evaluating filter performance (Baxter et al., 2002; Hawari and Alnahhal, 2016). 
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1.3.3. Knowledge-based models. 

Knowledge-based models (KBMs) are modelling techniques that become suitable for 

consolidating the process engineering knowledge gained from experience and 

observations with operating a certain system. KBMs are able to incorporate quantitative 

and qualitative data and information. Expert opinion can be incorporated in form of rule-

based systems through a process called knowledge elicitation. Imprecision related to 

human decision-making can also be incorporated in these systems through the use of 

fuzzy sets. Fuzzy inference systems (FISs) are an AI modelling technique that uses the 

available process knowledge to build a set of rules using fuzzy logic, emulating the 

human decision-making process. Mamdani’s method  for building a FIS algorithm is 

composed by 1) Fuzzification of input variables, where crisp input values are 

transformed to fuzzy sets by fuzzy membership functions; 2) Rules, where fuzzy if-then 

“rules” between input and output variables’ attributes are defined on the basis of expert 

knowledge, and 3) Defuzzification, where the fuzzy output variable is transformed to a 

crisp output (Mamdani and Assilian, 1999). A schematic of this process is represented in 

Figure 7. 

 

Figure 7. Scheme of a fuzzy inference system. 

FISs can incorporate high-level expertise to aid in problem solving and provide a flexible 

knowledge representation capability.  

There have been efforts from the scientific community to formalise procedures for 

knowledge elicitation and including expert opinion into models (Krueger et al., 2012). 

Kelly et al. (2013) discusses the selection of the most adequate knowledge-based 

modelling technique, depending on the model requirements and discusses their 

advantages and disadvantages, as well as provide some further references of 

applications aimed to solve environmental problems. 
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In the environmental domain, knowledge-based models have been used in the water 

and wastewater treatment field for prediction and forecasting, and for improving 

decision-making in full-scale facilities (Corominas et al., 2017; Kelly et al., 2013). Fuzzy 

logic-based systems have been used in drinking water treatment to predict coagulant 

dose from raw water characteristics (Bello et al., 2014; Lamrini et al., 2014) or to 

evaluate plant design and operations at DWTPs (Chowdhury, 2012; Chowdhury et al., 

2007). Oliveira et al. (2019) used fuzzy-logics to develop a quality index for raw water 

and assess its influence on water treatment. 

Other applications of knowledge-based control systems in water-related fields include 

the automation of an membrane bioreactor control system (Comas et al., 2010), 

optimisation of methane production in fixed-bed reactors (Robles et al., 2018) or the 

control of nitrogen removal processes in wastewater (Boiocchi et al., 2016). 

 

1.3.4. Hybrid models 

Apart from purely data-driven or knowledge-based models, hybrid models have the 

ability to use either qualitative and quantitative data.  

Case-based reasoning (CBR) is an AI modelling technique that aim to provide solutions 

to new cases by looking at solutions of previous similar cases (Gibert et al., 2018). The 

response variables used by these models can be either quantitative (therefore used to 

forecast or predict values) or qualitative (used for classification purposes). A general CBR 

model is described by four processes: Retrieve, Reuse, Revise and Retain (Aamodt and 

Plaza, 1994). These models require a sufficiently big data set to ensure the 

representativeness of the System. CBR have found Applications in the wastewater 

treatment field for supervising the treatment management (Núñez et al., 2003; 

Rodriguez-Roda et al., 2002; Sànchez-Marrè et al., 1997). 

Bayesian networks (BNs) establish causal relationships between variables through 

conditional probabilities. The probability distribution functions can be derived from 

empirical data but also from expert’s knowledge. This ability confers BNs the ability to 

cope with quantitative and qualitative data in environmental systems. One example of 

BNs application in the water treatment field is for modelling drinking water treatment 

failures (Pike, 2004) or to represent uncertainties involved in decision-making in 

integrated catchment management (Kragt, 2009). 
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1.4. Main limitations of EDSSs for DWTP management 

Despite the growing literature of EDSS applications in drinking water, there are some 

research gaps that have to be fulfilled regarding the implementation in real DWTPs. 

Regarding this issue, several authors have described challenges and best practices to 

successfully implement EDSSs and narrow the gap between science and the market. 

Among different authors, some of the challenges faced for EDSS adoption by end-users 

is the need for involving stakeholders and end user from the very beginning (McIntosh 

et al., 2011; Poch et al., 2017). Hamouda et al. (2009) reviewed EDSSs applications for 

selecting water treatment plants and found that the most successful EDSSs (being used) 

where those tailored to the specific needs of companies and plants. It was also noted 

that there are too many variables to accommodate a generic EDSSs to the local 

conditions of a plant. These findings are in agree with a more recent review in Raseman 

et al. (2017), where it states that EDSSs should reflect more accurately the utility needs. 

Therefore, given the lack of generic EDSSs, water practitioners find difficulties in 

transferring knowledge obtained by previous studies to their local systems and do not 

have the opportunity to implement this tools for controlling their processes. 
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1.5. Motivation 

Drinking water treatment plants, especially in Mediterranean regions face changes in 

raw water quality. In the framework of increasing stringent regulations and digitalisation 

of industry, tools to systematise decision-making at full-scale plants are needed. The 

development of environmental decision support systems has been focused on 

wastewater treatment during the last decades, and less attention has been paid to the 

drinking water treatment. The complexity of developing mechanistic models able to 

describe the physical-chemical processes that occur in drinking water treatment 

motivates the development of data-driven and knowledge-based models. These models 

can be built upon practitioners’ experience and the available data from the processes. 

Anyway, this has encountered difficulties when implementing to full-scale facilities. 

 

1.6. Research Hypothesis 

Given the high degree of digitalisation in modern DWTPs and the little attention that 

DWTPs have received in EDSSs, it should be possible to develop new models to address 

operational challenges that DWTPs treating surface water are facing, especially in 

Mediterranean regions where both anthropogenic and climate pressures are highly 

affecting the quality of water resources. 

Therefore, given the available data and the accumulated knowledge of plant managers, 

the hypothesis of research is that new models should be developed tailored to DWTPs 

specific needs. By systematising the decision-making, these utilities would benefit from 

adopting advanced control systems, permitting a better and more efficient control and 

management of water treatment processes. 
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The main objective of the thesis was to develop an environmental decision support 

system for aiding in the daily decision-making at two surface water DWTPs in Catalonia 

using the available data and process knowledge. This system is aimed to be used for daily 

decision-making and therefore, must be compatible with the digital infrastructure of full-

scale utilities. 

The final EDSS should integrate different modules addressing the operational challenges 

of two DWTPs by taking into account the raw water quality and other factors that 

contribute to the control and management of DWTPs in real-time. To these means, 

several specific objectives were defined: 

 To develop a data-driven model for predicting the oxidant demand at the inlet 

of Llobregat DWTP, and to integrate it in an EDSS structure to aid in decision-

making. 

 

 To develop an EDSS module for supervising the DBPs formation risk at Llobregat 

DWTP and manage the advanced treatment process. 

 

 To develop an EDSS module for controlling the primary disinfection and 

managing the disinfection by-products formation at Ter DWTP. 

 

 To develop a key performance indicator for supervising the microbial risk at Ter 

DWTP. 
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3.1. Case Study 

Ens d’Abastament d’Aigua Ter-Llobregat (ATL) is the public company that treats and 

supplies drinking water to Barcelona Metropolitan Area (BMA), which covers 635 km2 

with a population of about 4.5 million inhabitants. Water supplied to this territory comes 

mainly from surface water (85%) from Llobregat and Ter rivers, and also from two 

seawater treatment plants (SWTPs) (Figure 8). 

 

Figure 8. Situation of ATL’s DWTPs. 

To cope with the water demand in all the territory, ATL network is composed by more 

than 1000 km of pipelines with diameters ranging from 20 to 300 cm. The configuration 

of the network is flexible and is decided on a day-to-week basis, depending on water 

demand at BMA and water quality at the sources. Regarding this latter point, water from 

Llobregat and Ter river present different quality characteristics. 

Llobregat DWTP takes water directly from Llobregat river, and is located at the 

municipality of Abrera. The raw water quality has high concentrations of organic matter, 

and salinity and has great differences of temperature along the year. This quality issues 

are related to the mining activities of large salt deposits in the upper part of the basin 

and also to the Mediterranean climate (J.L. Fernández-Turiel et al., 2000). The water of 
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Llobregat river receives also the impact from urban and industrial wastewater 

discharges. 

On the other hand, Ter DWTP is located in the municipalities of La Roca del Vallès, 

Cardedeu and Llinars del Vallès, and takes water from river Ter. The effect of the 

reservoirs system on the water  quality is noteworthy by the low turbidity of water 

entering at Ter DWTP. Some raw water quality parameters regarding Llobregat and Ter 

DWTPs are compared in Table 2. 

Table 2. Summary of raw water quality at Llobregat and Ter DWTPs. n=365, Period: 
January 2019- December 2019. N.D.: No data. 
Parameter Units Llobregat DWTP Ter DWTP 

Temperature ºC 16.83 ± 6.1 12.90 ± 2.7 
Turbidity NTU 18.84 ± 33.0 0.97 ± 0.3 
pH  8.03 ± 0.2 7.99 ± 0.1 
UV254 m-1 7.53 ± 3.2 6.96 ± 1.2 
TOC mg·L-1 3.34 ± 0.7 2.96 ± 0.3 
Conductivity mS·cm-1 1.44 ± 0.3 0.47 ± 0.02 
Bromide mg·L-1 0.67 ± 0.2 N.D. 

 

As it can be seen, there are some differences in water quality between the two 

catchments at Ter and Llobregat DWTPs. Llobregat river presents higher fluctuations of 

temperature, organic matter and salinity. On the other hand, even Ter river has also 

variations of temperature and organic matter, they are more equalized thanks to the 

reservoirs’ effect. Also, the possibility of taking water from different depths in the 

reservoirs allows to choose better water quality along the year. 

Ter and Llobregat DWTPs are described in wider detail in the following subsections. 
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3.1.1. Llobregat DWTP 

Llobregat DWTP has a capacity of treating 3.2 m3·s-1, and it is composed by a 

conventional treatment followed by an advanced treatment. The conventional line is 

composed by (1) Pre-oxidation with potassium permanganate; (2) pH Adjustment with 

CO2 dosing; (3) Coagulation/flocculation and (4) Sedimentation, (5) Oxidation with 

chlorine dioxide, (6) Sand filtration and (7) GAC filtration. Following this treatment, a 

fraction of GAC filtered water is sent to an electrodialysis reversal (EDR) treatment unit 

(8). This advanced process has modular operation that allows a flexible treatment 

capacity from 0 to 2.3 m3·s-1 (corresponding to 60% of total plant capacity) 

independently from the conventional treatment, by activating from 0 to 9 modules. 

Additionally, remineralisation of EDR effluent using lime dissolution by carbon dioxide 

can be applied if necessary (9). Finally, the product water of EDR is blended with 

conventional treated water and disinfected with sodium hypochlorite (10) before 

entering the storage tanks (11) and be sent to the distribution network.  

 

 

Figure 9. Llobregat DWTP treatment scheme for water line. 1: Pre-oxidation; 2: pH 
Adjustment; 3: Flocculation/coagulation; 4: Settling; 5: Oxidation; 6: Sand filtration; 7: 
GAC filtration; 8: EDR; 9: Remineralisation; 10: Disinfection and 11: Storage. 



Chapter 3: Methodology 

30 30 
30 

3.1.2. Ter DWTP 

Ter DWTP takes water from a system of water reservoirs connected in series (Sau-

Susqueda-Pasteral) of Ter river, through a 56 km gravity-driven pipeline. The treatment 

train of Ter DWTP includes (1) pH adjustment with carbon dioxide dosing; (2) Primary 

disinfection with sequential addition of chlorine dioxide and sodium hypochlorite; (3) 

Coagulation/flocculation using polyaluminum chloride and modified starch followed by 

(4) Sedimentation; (5) Gravity filtration by GAC media and (6) Secondary disinfection 

with sodium hypochlorite. Before entering the supply system, the treated water is stored 

in tanks inside the plant (7). The Hydraulic Retention Time in the storage tanks (HRTST) 

can range from 0 hours (in by-pass conditions) to 50 hours. Finally, the water is conveyed 

to different municipal service tanks through the water supply system. Therefore, the HRT 

of water before it is consumed at the tap can range from few hours to several days. A 

flow diagram of Ter DWTP is shown in Figure 10. 

 

 

Figure 10. Flow diagram of Ter DWTP, showing the different chemicals involved in each 
process. 1: pH Adjustment; 2: Primary disinfection; 3: Coagulation/Flocculation; 4: 

Sedimentation; 5: GAC rapid filtration; 6: Secondary disinfection; 7: Storage. 
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3.2. Data Acquisition 

Data of Ter and Llobregat DWTPs has been acquired from different sources. Time-

stamped samples were downloaded and organised in three different databases 

depending on the data origin for allowing data analysis and model development. 

Generally, data was organised in matrixes where each row corresponded to a sample 

and each column corresponded to a variable. Samples were identified by their date time. 

 

3.2.1. Lab analysis Database 

ATL routinely monitors quality parameters at different stages of the water treatment. 

Historical data is accessible through a data management system as part of the quality 

program of ATL. This data is manually entered and verified in a quality system. It provides 

a valuable database, which is highly reliable, even each parameter has a different 

sampling frequency: 2, 4, 12 or 24h. Samples taken at 7 a.m. were selected for building 

a database of daily-representative values.  

This data provides a useful database for characterising raw water quality, and for looking 

in correlations between variables. 

 

3.2.2. Operational set-points database 

Operational set-points, as well as chemical consumption are recorded in a database. 

Data contained in this database are daily means of operational set-points and chemical 

dosing rates, and represent the average values every 24h. 

 

3.2.3. Online sensors database 

Data coming from sensors generate a huge amount of data. Most of sensors provide 

continuous readings. These can be accessed as punctual values, 10-minutes or hourly 

average values. This data is stored in servers for online monitoring from supervisory 

control and data acquisition (SCADA) systems. 

This data is automatically stored and therefore, there is no check of data quality. This 

often requires the use of pre-processing techniques before looking for relationships 

among data or to gain valuable insights. The availability of online measures is crucial for 
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developing EDSS that can be automatically executed without the need of manual inputs 

from users. This data is especially useful to look for correlations and quality variations 

through the day. 

The location and amount of water quality sensors in Llobregat and Ter DWTP respond to 

the utility need of monitoring each treatment process. The placement of quality sensors 

at these two DWTPs is illustrated in Figure 11 and Figure 12, respectively. 

 

Figure 11. Placement of quality sensors along the treatment process at Llobregat DWTP 

 

 



Chapter 3: Methodology 

33 

 

Figure 12. Placement of quality sensors along the treatment process at Ter DWTP 

 

 

3.3. Software 

MATLAB® is a software developed by Mathworks® designed to analyse data, develop 

algorithms and create mathematical models. 

Data analysis, development and integration of the EDSS modules, as well as the 

development of graphical user interfaces in this thesis has been done in MATLAB 

R2015b. A brief description of some MATLAB functions used in this work, as well as the 

performance metrics used for model evaluation can be found in the Annex I.
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4. Results I:  

Predicting the Oxidant Demand in a surface water treatment 

plant: Model development and integration into an 

environmental decision support system. 
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4.1. Background 

Pre-oxidation with potassium permanganate is the first chemical barrier at many DWTPs. 

This chemical is dosed at the beginning of the treatment to oxidise a wide range of 

compounds for their subsequent removal by treatment processes. It has some 

advantages in comparison with other alternatives like chlorine, because it does not 

generate THMs, a hazardous DBPs of chlorination. This fact becomes very important in 

utilities that present high THMs formation potential, since it has allowed to move the 

chlorine dosing at the end of the treatment process, where THMs formation is highly 

reduced. Permanganate is applied for oxidising iron and manganese, algal-derived 

compounds, taste and odour compounds, DBPs precursors and for the control of 

microorganisms in the intake structures or treatment basins (Hu et al., 2018; World 

Health Organization, 2004). 

DWTP treatment managers adjust the permanganate dosing rate according to a multi-

parametric evaluation that includes kinetic and inlet quality parameters. At this point, 

an optimal dosage is the one that maximises the oxidation of a wide group of compounds 

in raw water (and therefore improving the subsequent treatment unit operations) but 

does not surpass a certain manganese residual concentration in water. An overdose of 

permanganate is easily detectable through visual inspection, since it gives water a pink 

colour. The development of an advanced control tool can help treatment plant managers 

and operators to deal with this multi-parametric challenge, especially in Mediterranean-

like areas where surface water can have strong variations in quantity and quality through 

the year. 

Some permanganate modelling studies have been done targeting the kinetics of 

microcystins oxidation (Jeong et al., 2017; Kim et al., 2018; Sharma et al., 2012) and 

identified pH, Dissolved Organic Matter (DOC), UV absorbance of the water at 254 nm 

(UV254) and specific ultraviolet absorbance (SUVA) as quality parameters that control 

the kinetics of this process. Some others have focused on the oxidation of organic 

contaminants and the removal of THMs precursors (Colthurst and Singer, 1982; Hidayah 

and Yeh, 2018; Hu et al., 2018; Naceradska et al., 2017; Sharma et al., 2012; Zhang et al., 

2009). In this point, there is no universally accepted mathematical description of the 

overall process. EDSSs were designed to cope with this kind of challenges because of 

their ability to integrate different kinds of mathematical models and expert knowledge 

(Poch et al., 2004). In this context, artificial neural networks (ANN) have been reported 

as universal approximators and as a suitable tool for their predictive potential and the 
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capacity of modelling multiple-variable nonlinear phenomena in water treatment 

(Baxter et al., 2002; Maier and Dandy, 2000). 

Even sensitivity analysis and structural validation can contribute in understanding the 

inner mechanics of ANNs, one limitation of data-driven models is their lack of 

transparency (Humphrey et al., 2017; Olden and Jackson, 2002). An EDSS should provide 

users with a justification of the proposed actions in order to build confidence among 

users and be a real aid for decision-making (Worm et al., 2010). It is also important the 

development of user-friendly and web-based systems for improving EDSSs usability 

(Mannina et al., 2019). 

The incorporation of AI techniques into EDSSs has led to more accurate and reliable 

systems (Núñez et al., 2003). CBR has been used for modelling the experimental 

knowledge of wastewater treatment plants operation for more than two decades 

(Sànchez-Marrè et al., 1997), allowing the use of past experiences to solve new cases in 

a certain process. In the present study, a preliminary approach to a CBR model is 

approached for backing up the predictive model outputs with a distribution of solutions 

in the past given similar operating conditions. This way, the precision of the predictive 

model can be compared with the precision in past decisions for similar input conditions 

and thus, the confidence in the use of the EDSS for operating a certain process can be 

strengthened. 

The objective of this study was to 1) to develop a predictive model for predicting the 

potassium permanganate demand for a drinking water treatment plant following a 

systematic feature and model selection procedures and uncertainty analysis, and 2) 

Integrate the predictive model with a CBR engine in a EDSS to strengthen confidence on 

the use of the tool for the daily operation of the process at the DWTP. 
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4.2. Methodology 

4.2.1. Case study 

This study was focused on Llobregat DWTP, as representative example of DWTP treating 

water from a Mediterranean river with high quality variations over the year. A five-year 

period was suitably chosen as a time-space for representing the variations that Llobregat 

DWTP catchment may suffer due to the management plans of the upper part of the 

basin. A dataset with analytical values and operational data from daily samples collected 

at 7am was built for the period January 2013-December 2018. 

The first step for developing a model is the selection of inputs and outputs. The selected 

output in this study was the potassium permanganate dose (DKMnO4).  For selecting the 

inputs, a pool of input candidates was considered based on the data availability (from 

commercially available sensors and probes) and on the existence of a known or 

suspected relationship with the output variable (Baxter et al., 2002). The pool of 

candidates includes all applicable variables for developing the data-driven model: Raw 

water temperature (TRW), pH (pHRW), total organic carbon (TOCRW), Turbidity (TurbRW), 

electrical conductivity (ECRW), UV absorbance at 254nm (UV254RW), Color (ColorRW) and 

Inflow rate (QRW). Main characteristics of these parameters are summarised at Table 3. 

Table 3. Raw water characteristics of Llobregat DWTP. N=2040 samples from January 

2013 to December 2018. 

Parameter Unit Mean St. Dev 10th 
Percentile 

90th 
Percentile 

TRW ºC 16.8 6 8.5 24.9 
pHRW - 8.11 0.2 7.85 8.37 

TOCRW mg·L-1 3.31 0.8 2.51 4.21 
TurbRW NTU 39 35 5 76 
ECRW µS·cm-1 1347 262 1033 1659 

UV254RW m-1 6.94 1.9 5.30 9.10 
ColorRW mg Pt-Co·L-1 11.00 5.0 7.50 16.90 

QRW m3·s-1 1.85 0.7 0.90 2.80 
DKMnO4 mg·L-1 0.82 0.3 0.42 1.23 
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4.2.2. Predictive model selection 

For modelling purposes, historical data was allocated into a calibration and test dataset 

(70 and 30%, respectively) to assess model’s ability to perform well on data that was not 

used to calibrate it (generalization property). To ensure that data contained in these 

subsets contain similar statistical properties, allocation of the data was done using a self-

organised map algorithm (May et al., 2010) with the selforgmap() function. Therefore, 

calibration dataset was used for model fitting purposes and for assessing the replicative 

validation of the models whereas test dataset (unseen during model calibration) was 

used for predictive validation. Two kinds of modelling techniques were compared: 

Multiple linear regression (MLR) and multi-layer perceptron (MLP). 

A MLR model can be represented in the form: 

Y=β0 + β1·X1 + β2·X2 + … + βn·Xn     (eq. 1) 

where Y is the response variable, β0 is the intercept coefficient, X1, …, Xn are input 

variables and β1, …, βn are coefficients estimated by a least squares technique. Input data 

was log-scaled before fitting the multiple linear regression model using fitlm() function. 

Data points below 5% and above 95% of the empirical distribution cumulative function 

ecdf() were marked as outliers and removed from the original dataset after applying a 

robust regression method. 

Multi-layer perceptrons (MLPs) are amongst the most used ANN architectures in the 

prediction of water quality parameters (Maier et al., 2010; Wu et al., 2014). MLP have 

minimum three layers: Input layer, where each node represents one input variable; 

Hidden layer, where each input is weighted and connected with non-linear activated 

function (sigmoid) and the Output layer, where the output is calculated from the result 

of the previous layer nodes through a linear transfer function. 

The architecture of the presented model is defined by the number of independent or 

state variables (Nvar) and the number of nodes in the hidden layer (K). A scheme of the 

generic model is shown for N=4 and K nodes in Figure 13. It consists of two different kind 

of inputs (State variables or inputs, and Parameters) connected with an output through 

a single-hidden-layer MLP. For the MLP architecture with a single hidden layer, there is 

a total amount of K·(Nvar+2)+1 parameters to be estimated. 
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Figure 13. Generic model structure for a multi-layer perceptron with a single hidden 

layer and sigmoid activation function for the prediction of potassium permanganate. 

wn,k is the weight from input n to node k; wk is the weight from node k to the output 

layer; bk is the bias value for node k; bK+1 is the bias value for the output layer node. 

Input variables and outputs were standardized with Z-score transformation. In this 

operation, input variables are scaled and centred to zero according to the mean and 

standard deviation using Eq. (2).  

𝑥𝑖,𝑛𝑜𝑟𝑚 =
𝑥𝑖−𝑥𝑚𝑒𝑎𝑛

⁡𝑥𝑆𝑡𝑑
      (eq. 2) 

where xi is the ith sample for variable x, xi,mean is the mean value of variable x, xStd is the 

standard deviation and xi,norm is the normalised value of xi. Standardization of input 

variables is essential to ensure that same percentage change in the weighted sum of the 

inputs causes a similar percentage change in the unit output (Olden and Jackson, 2002). 

The MATLAB Neural Network Toolbox™ was used to obtain parameter values for 

initialisation of the algorithms. ANN architectures corresponding to a single hidden layer 

MLP with number of nodes ranging from 1 to 9 in the hidden layer (namely ANN-K, being 

K the number of hidden nodes) are assessed in this study for finding the model that best 

captures the underlying relationships in the experimental data. 
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4.2.3. Features selection 

Among all the possible input subsets, a procedure has to be followed to systematically 

choose the one that provides sufficient prediction accuracy for subsequent model 

development. The best subset selection method was applied to a pool of predictors 

candidates (p=8), including all the quality parameters listed in Table 3. This method 

consists of fitting models that consider every possible combination of input subsets, 

using p predictors, for p=1, …,8 (James et al., 2013), being 2p the total number of possible 

combinations. In this case, the predictors are the state variables or independent 

variables of the predicted system. By doing this, a single best model can be chosen that 

minimises the cross-validation prediction error or maximises the adjusted R-squared. 

Adjusted R-squared was used because it adjusts the coefficient of regression to the 

number of terms in a model. This method is adequate when p is not large, since it is not 

computationally efficient. 

 

4.2.4. Parameter Estimation 

In a parameter estimation problem, a set of model parameter is calculated using an error 

minimisation algorithm following Eqs. (3) and (4):  

𝑒𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖, 𝜃)      (eq. 3) 

𝜃 = 𝑎𝑟𝑔⁡𝑚𝑖𝑛∑ 𝑒𝑖
2𝑁

𝑖=1       (eq. 4) 

where xi is the ith observation of independent (or input) variables, yi is the ith observation 

of the dependent (or target) variable y, Ө is the set of unknown model parameters, ei is 

the error between the observed and predicted value on the ith observation and N is the 

total number of observations. In this method, residuals ei (difference between 

observations yi and model outputs f(xi,⁡𝜃)) are used to perform a minimisation algorithm 

using least squares method and find optimal parameter values 𝜃. 

Typical error minimisation algorithms used in parameter estimation, like least squared, 

assume a Gaussian distribution of errors and therefore, outliers can have a significant 

impact on the curve fit. Given the fact that data from a full-scale DWTP is used in this 

study, the presence of outliers resulting from abnormal conditions during start-up of the 

treatment or errors in data entry in the database is quite predictable. Lorentzian or 

Cauchy distributions can adjust the distribution of errors in a more appropriate manner 

than a Gaussian fit, because they have wider tails. Therefore, residuals between 
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observations and model output can be accordingly weighted (𝜔𝐶𝑎𝑢𝑐ℎ𝑦,𝑖) before applying 

a least-squares method to obtain parameter estimator set 𝜃∗, as shown in eq. (5) and 

(6). 

𝜔𝐶𝑎𝑢𝑐ℎ𝑦,𝑖 =
1

1+𝑒𝑖
2     (eq. 5) 

𝜃∗ = 𝑎𝑟𝑔⁡𝑚𝑖𝑛∑ 𝜔𝐶𝑎𝑢𝑐ℎ𝑦,𝑖 · 𝑒𝑖
2𝑁

𝑖=1    (eq. 6) 

A robust nonlinear regression method like the iterative reweighted least squares 

algorithm, assuming a Cauchy distribution of the errors will be used as a first parameter 

estimation method for advanced outlier treatment. This method was implemented with 

the nlinfit() function, specifying the “Cauchy robust weight function” option. 

Following the methodology proposed in Frutiger et al. (2015), an empirical cumulative 

distribution function (ECDF) of the residuals between experimental data and predicted 

values from the robust nonlinear regression is used for outlier detection and removal. 

The basis of this method is that it does not assume a normal distribution of the errors a 

priori, instead the method estimates directly the underlying cumulative distribution 

function of the errors and use this to infer outliers. The ECDF is a step function that 

increases by 1/n in every data point (n is the number of observations) and was calculated 

using the ecdf() function. According to this method, data points below 2.5% or above 

97.5% the probability levels can be considered outliers and removed from the dataset. 

Once outliers have been removed from the original dataset, bootstrap method was used 

as a statistical method for parameter estimation of the model. This method was chosen 

because it works with the actual distribution of the measurement errors and is 

considered to be valid to calculate parameter estimation when the underlying 

distribution of the errors is not known (Sin and Gernaey, 2016). In this method, a first 

parameter estimation is done using nonlinear least squares minimisation function 

lsqnonlin(), thus obtaining a first set of parameter estimators 𝜃0. The residuals from this 

process (𝑒̂) are collected and new residuals subsets 𝑒̂∗ are created by random sampling 

and replacement of 𝑒̂. In this latter procedure, a matrix of size [Nx1] is generated using 

the random number generator rand(), which is then used for sampling residual subsets 

from 𝑒̂⁡. Several synthetic datasets [y1, y2… y𝑁𝐵𝑇] are then generated by assigning 𝑒̂∗ to 

the output dataset using a Monte Carlo scheme following Eq. (7). 

𝑦𝑖 = 𝑦 + 𝑒̂𝑖
∗⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑖 = 1, 2…𝑁𝐵𝑇     (eq. 7) 
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where NBT is the number of bootstrap samples. This way, the measurement error is 

simulated in the new datasets.  

At this point, it is important to check that the distribution of the residuals of the model 

output is random. For each synthetic dataset, the parameters are re-estimated, thus 

obtaining a distribution of the parameter estimators Ө̂ = 𝜃1, 𝜃2… . 𝜃𝑁𝐵𝑇
(NBT x p) (NBT is 

the number of synthetic datasets and p the number of parameters estimated) which is 

supposedly centred to the real value of the parameters. MATLAB Scripts from Sin and 

Gernaey (2016) were adapted for parameter estimation using Bootstrap method. 

After applying Bootsrap method for parameter estimation, several statistics can be 

computed to assess model performance in terms of replicative and predictive 

performance. While replicative performance refers to the ability of ANN to fit the 

calibration dataset, the predictive performance refers to the validation dataset. Mean 

Absolute Error (MAE), coefficient of determination (R2) and Spearman’s rank correlation 

coefficient (ρ2) can be computed for assessing replicative and predictive performance of 

the models. 

The covariance and correlation matrix of parameter estimators can be obtained directly 

from Ө̂ (NBT x p) using the functions cov() and corr(), respectively. 

The number of parameters to be estimated and therefore, the size of the correlation 

matrix (p x p) will depend on the architecture of the model. The correlation between two 

parameters will indicate if the parameter estimators are uniquely identifiable or not. 

 

4.2.5. Uncertainty analysis 

A Monte Carlo scheme was used for quantifying the uncertainty of the models resulting 

from uncertainties in the parameter estimation step. This quantification in full-scale 

plants is important to increase the awareness of modelling robustness and to avoid bad 

modelling practices (Borzooei et al., 2019). To these means, 100 parameter sets were 

sampled from the joint distribution of parameter estimators  (𝜃) using multivariate 

random sampling with mvnrnd() function. The probability density of Monte Carlo 

outputs for each observation can be computed using ksdensity() function. 
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4.2.6. Sensitivity analysis 

Sensitivity analysis are used to study the effects of variation in the model inputs onto 

the model output. ANN sensitivity analysis methods differ from the typical ones used in 

statistical or mechanistic models in that their parameters (weights and biases values of 

the hidden and output layer) do not have any physical meaning by itself. Humphrey et 

al. (2017) highlights the importance of considering and reporting the structural validity 

of artificial neural network models (in addition to predictive and replicative validity) in 

order to make plausible models and to certify that the model has captured well the 

underlying relationship in the calibration data. In this regard, several sensitivity 

techniques to quantify the relative importance (RI) of ANN inputs are reported and 

discussed in the literature (Humphrey et al., 2017; Olden and Jackson, 2002; Sarle, 2000).  

Among several techniques, Connection Weight (CW), Partial Derivatives (PaD) and 

Profile Method (PM) are chosen in this study as two different methods for quantifying 

RI of inputs: The first one, based on the connection weights between input-hidden and 

hidden-output layers of ANN; and the second and the third one, based on the effects of 

variation of the inputs onto the output of the ANN model. Details of theory are given in 

the Annex II (A2.1), and for further details and discussions on these methods, the 

interested reader can read the work of Humphrey et al. (2017). 

A scheme of the methodological approach covered in this study is summarised in Figure 

14. 
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Figure 14. Flow diagram for methodological approach for developing a predictive 
model. 
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4.2.7. Case-based reasoning model 

CBR is an AI modelling technique that aim to provide solutions to new cases by looking 

at solutions of previous similar cases. In the present application, a CBR model was 

approached to provide the user with information about which permanganate doses 

were used in the past, given similar raw water and operational characteristics. A general 

CBR model is described by four processes: Retrieve, Reuse, Revise and Retain (Aamodt 

and Plaza, 1994). At the present study, the preliminary approach to CBR model only 

comprises the first two processes, that consist of 1) Retrieving the most similar cases 

and 2) Reusing the solutions (permanganate dosing rate) in these cases to support the 

predictive model outputs. Local and global similarity indices were used to find the most 

similar cases to the current one. Local similarity was assessed using domain expert 

knowledge in a binary basis, as expressed in eq. (8): 

 

𝑆𝐼𝑀𝑙𝑜𝑐𝑎𝑙(𝐶𝑖,𝑘, 𝐶𝑗,𝑘) = {
1⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡⁡⁡⁡𝐶𝑗,𝑘 ∈ [𝐶𝑖,𝑘 − 𝑎𝑡𝑟𝑘 , 𝐶𝑖,𝑘 + 𝑎𝑡𝑟𝑘]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

0⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
⁡⁡⁡⁡⁡⁡⁡ (eq. 8) 

 

where SIMlocal is the local similarity measure of attribute k between cases Ci and Cj, Ci,k is 

the value of attribute k in case Ci and atrk is the local similarity for attribute k. Domain 

knowledge was used to assign atrk values. For k= TRW, TurbRW, UV254RW and QRW, atrk was 

set to 2.5 ºC, 20 NTU, 1.5 m-1 and 0.5 m3·s-1, respectively. 

Global similarity (SIMglobal) between two cases (Ci, Cj) was also assigned in a true/false 

basis, being true only if all local similarities were true. 

 

𝑆𝐼𝑀𝑔𝑙𝑜𝑏𝑎𝑙(𝐶𝑖, 𝐶𝑗) = ⁡⁡ {
1⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡⁡⁡∀⁡𝑘,⁡⁡⁡⁡⁡𝑆𝐼𝑀𝑙𝑜𝑐𝑎𝑙(𝐶𝑖,𝑘, 𝐶𝑗,𝑘) = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

0⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
⁡⁡⁡⁡⁡⁡⁡ (eq. 9) 

 

Given a case C0, the probability density of solutions for all cases C1… CN from the historical 

database where SIMglobal=1 can be computed as a means to illustrate operator’s 

behaviour uncertainties in similar past situations. Note that in the present study it is not 

intended to find the most similar case and provide a unique solution rather than 

providing the user with a distribution of similar actions done in the past. Therefore, this 
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preliminary approach to CBR model gives a probability distribution of past actions that 

is comparable to the uncertainty analysis made for the predictive model. 

A schematic of how the predictive and the CBR model outputs are integrated is shown 

in Figure 15. 

 

Figure 15. Flow diagram of predictive and case-based reasoning model integration 

 

  



Chapter 4: RESULTS I 

49 

4.3. Results and Discussion 

4.3.1. Features Selection  

Best subset selection method was followed for selecting the features of the data-driven 

models. Results after fitting MLR models with all possible input subsets containing from 

p=1…8 predictors are shown in Figure 16.  

 

 

Figure 16. Adjusted R-Squared for all possible combinations of subsets containing from 
1 to 8 predictors as input variables in a MLR model for predicting the permanganate 

dose. 

It can be seen that as the number of predictors increase, the model accuracy in terms of 

adjusted R-squared increases but at p=4, the inclusion of an additional predictor in the 

MLR model does not correspond to a significant increase in the adjusted-R2. Within the 

all possible combinations including four variables, the subset that maximises model 

accuracy included the following state variables: TRW, TurbRW, UV254RW and QRW, with an 

adjusted R-squared of 0.54. 

The selected subset was considered to have physical meaning in the pre-oxidation 

process. TRW strongly affects the kinetics and solubility of permanganate in water, and 

seasonal variability is strongly related to this. Turbidity and UV254 are surrogate 

measures for suspended solids, organic matter and sediments, among others. These 

parameters are usually associated with organic loads resulting from river’s runoff, being 
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positively correlated with the permanganate dose. The inflow rate is inversely 

proportional to the contact time that water is in contact with permanganate in the pre-

oxidation chamber and also in the clarifiers, thus affecting the oxidation process. Other 

parameters like pHRW did not result in the best input subset. This might be because pH is 

adjusted at the inlet of the DWTP targeting a value of 7.45 by a carbon dioxide dosing. 

Therefore, pHRW didn’t show to play a key role, as expected. 

 

4.3.2. Predictive model selection 

Bootstrap method was applied on the outlier-treated dataset and selected ANN 

architectures. The residuals obtained using this method were checked and shown in 

Figure 17, which confirmed to follow a random pattern scattered around mean close to 

zero. This confirms the suitability of using bootstrap method to quantify the effect of 

measurement error on model performance (Efron, 1979; Frutiger et al., 2016). The mean 

of the parameter estimator matrix (Ө̂) calculated after bootstrapping for every ANN 

architecture were used for model performance evaluation. 

 

Figure 17. Residuals of ANN-1 after applying bootstrap method for parameter 

estimation 

The performance statistics of MLR and MLP models using the selected features, after 

exclusion of ECDF outliers and resulting from applying Bootstrap method for parameter 

estimation were compared for the selection of the predictive model. Results using both 
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calibration (replicative validation) and test dataset (predictive validation) are shown in 

Figure 18. 

 

 
Figure 18. Mean absolute error of model predictions for the MLR and the different 

MLP-K models, being K=1…9 nodes in the hidden layer. 

MLR showed similar performance compared to MLP models. For evaluating model 

performance, the attention is focused on the validation dataset, since it is unseen data 

during the model development phase. In Figure 18, three minimum MAE areas can be 

observed for the validation dataset. The first one, at K=1 with MAE= 0.109 mg·L-1; the 

second one at K=4 with MAE=0.109 mg·L-1 and the third one at K=7 with MAE= 0.107 

mg·L-1 respectively. More details of the performance of these models is given in Table 4. 

As can be observed among ANN-1, ANN-4 and ANN-7, all of the performance statistics 

are in the same range for both calibration and validation dataset and there is no clear 

difference among them regarding these metrics. On the other hand, MLR showed worst 

results with MAE of 0.129 mg·L-1 on the validation dataset.  
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Table 4. Statistics used for evaluating the model performance for ANN-1, ANN-4 

and ANN-7. 

Model No. of Parameters Dataset MAE R2 ρ2 (Spearman) 

MLR 5 
Calibration 0,132 0,64 0,778 

Validation 0,129 0,64 0,785 

ANN-1 7 
Calibration 0,127 0,76 0,770 

Validation 0,128 0,74 0,801 

ANN-4 25 
Calibration 0,125 0,76 0,796 

Validation 0,129 0,75 0,804 

ANN-7 43 
Calibration 0,125 0,74 0,798 

Validation 0,127 0,75 0,810 

 

Llobregat DWTP treatment managers accepted model predictions that have 

discrepancies regarding their operational data in the 0-0.15 mg·L-1 range. Therefore, the 

values found for MAE, R2 and ρ2 confirm the applicability of the models to predict the 

permanganate demand in terms of predictive performance. The selected models (ANN-

1, ANN-4 and ANN-7) were selected to further assess their performance through 

uncertainty and sensitivity analysis. 

The mean, standard deviation of model parameters, the 95% confidence interval (CI) and 

the correlation matrix can be calculated from the covariance matrix obtained after 

applying bootstrap method. The correlation matrix of Ө̂ can help in determining if 

parameter estimators are uniquely identifiable or not. The summary statistics and 

correlation values of Ө̂ for the different ANN models are provided in the Annex II (A2.2 

and A1.3, respectively). 

Without taking into account the correlation of a parameter with itself, ANN-1 showed 

47.62% of the correlation coefficients (in absolute terms) above 0.5. These means that a 

big part of parameter estimators are strongly correlated (have similar sensitivity to the 

model output) and thus, not uniquely identifiable. On the other hand, ANN-4 and ANN-

7 showed only 3.78 and 1.00% of the correlation values above this number.  
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Overall, these identifiability issues (the fact unique parameter estimation is not possible) 

means that when ANN model is used for prediction, the simulations with the ANN model 

should be performed considering not only the mean values but also the covariance 

matrix of the parameters of the model, i.e. by performing MC simulations. The outcome 

of MC simulations will provide mean and variance of the ANN predictions. Identifiability 

of ANN parameters is not usually reported. Parameters with identifiability issues should 

not be attributed physical meaning since their values are not unique (Frutiger et al., 

2016). 

 

4.3.3. Uncertainty Analysis 

MC method was used for sampling different parameter subsets from the parameter 

estimator covariance matrix. In total, 100 different parameter estimator subsets Өi were 

obtained using multivariate random sampling. The model output for ANN-1, ANN-4 and 

ANN-7 including 10th and 90th percentile and mean value of MC simulations are shown 

in Figure 19. 

The spread of MC output is also represented by showing the probability density of the 

outputs at one specific data point. The higher extent of uncertainty in parameter 

estimators, the larger spread of MC outputs for each data point. Time -series plots of 

model output versus observed data including 10th and 90th percentile of MC simulations 

for the whole studied period are included in the Annex II (A2.4). 
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Figure 19. Representation of uncertainty predictions for KMnO4 demand time-series 

using Monte Carlo method for ANN1, ANN4 and ANN7, showing the Monte-Carlo 

simulation outputs, with mean value, 10th and 90th percentile, and the observed 

KMnO4 demand for the period 13/5/2015-16/5/2015. Probability density of Monte-

Carlo outputs on one date (15th May 2015) is also shown. 
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In general, the extent of uncertainty in the three tested models was shown to be low. 

Also, there were no significantly variations on the extent of uncertainty along the studied 

time period (e.g. variations between summer and winter periods). The smallest 

uncertainty was found for ANN-1, whereas it slightly increased at ANN-4 and ANN-7. Low 

uncertainty bounds can be due to negatively and highly correlated model parameters. 

The increase in the number of parameters and the better identifiability of ANN-4 and 

ANN-7 model parameters enlarged the uncertainty bounds and thus, providing a slightlty 

better fit with the observed data. Due to the narrow uncertainty bands, only 8.99%, 

18.43% and 12.89% of the experimental values for permanganate demand were shown 

to lie within the 10th and 90th percentile of MC outputs of ANN-1, ANN-4 and ANN-7 

respectively. 

 

4.3.4. Sensitivity Analysis 

The RI values of the four inputs selected for three models were calculated using 

Connection Weight, Partial Derivatives and Profile Method, and results are shown in 

Figure 20. The CW and PaD method illustrated the relative importance of inputs in the 

same order (TurbRW> TRW > UV254RW > QRW ), whereas RIProfile showed different order of 

importance especially in ANN-1. Turbidity is surrogate measure of sediments in water, 

metals, and NOM (World Health Organization, 2017) and thus is expected be positively 

correlated with the permanganate demand. UV254 measure accounts for the aromatic 

content of dissolved organic matter. In a study conducted by Kim et al. (2018) UV254 

and specific UV254 (SUVA254) were identified as the main DOM characteristics 

contributing to the permanganate consumption in natural waters, showing high 

correlation (R2= 0.95 and 0.96). This is in alignment with the RI of UV254 in the different 

models, especially in ANN-1. Temperature has positive RI for all the studied models, 

since it has an effect on the oxidation rate constants of permanganate in natural waters  

(Crittenden et al., 2012; Kim et al., 2018; Rodríguez et al., 2007). Finally, QRW, which is 

inversely proportional to the hydraulic retention time, showed negative values of RI and 

was placed to the least important input variable. A sufficient contact time prevents 

permanganate to pass through the downstream filters and enter the distribution system 

(Crittenden et al., 2012), and this is why operators have to adjust the dose according to 

the corresponding inflow rate. 
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Figure 20. RI computed for ANN-1, ANN-4 and ANN7 models using Connection Weight 
and Partial Derivatives Method. 

In addition to computed RICW, RIPaD and RIProfile, the profile method is also reported for 

assessing the plausibility of the models input-output relationships. This method is 

suitable for visually identifying the patterns fixed by the different ANN models. Very 

similar response curves were found for ANN-1 and ANN-4 regarding all input variables 

but less plausible relationships were found for ANN-7. The profile method plots for ANN-

1, ANN-4 and ANN-7 can be find in the Annex II (A2.5). 

Even ANN-1 had the simplest structure, it showed the most plausible input-output 

relationships according to a-priori knowledge of the system. Similar findings can be seen 

in study conducted by Humphrey et al. (2017), where the predictive and structural 

performance of three different ANN models with 1, 12 and 14 nodes in the hidden layer 

were compared for predicting surface water turbidity. It was shown that even a MLP 

with one neuron had the simplest architecture (low number of parameters and 

architecture com, it was shown that the MLP with one node in the hidden layer (the 

simplest tested architecture) captured the underlying relationships between inputs and 
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outputs better than the larger architectures, and this was demonstrated through 

sensitivity analysis techniques. 

 

4.3.5. Model integration in an EDSS 

For implementation of the model in the real process and allow the communication of 

the model outputs to the DWTP operators, models were integrated into an EDSS 

framework and a graphical user interface (GUI) was built. A screenshot of the developed 

GUI can be seen at Figure 21. The presented system is connected to the DWTP online 

data acquisition system and gathers real-time input data. The output of MLP-1 model 

and the probability distribution of Monte Carlo outputs and response of the CBR model 

are displayed. 

 

 

Figure 21. Graphical user interface for the EDSS 

 

Before running the control system in a closed loop and have results of the real impact 

and limitations of this tool, building confidence among the users is needed. Therefore, 

as an initial step, the EDSS is running in parallel with the Supervisory Control and Data 
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Acquisition (SCADA) system and is working as open-loop control system by 

recommending the operational set-points. The purposed permanganate dosing rate of 

the predictive model is backed-up by the reporting of the uncertainty analysis and CBR-

model outputs. This way, the extent of uncertainty/precision of the predictive model but 

also of the historical behaviour of the operators in similar cases are shown. Generally, 

uncertainties regarding the predictive model output were in a lesser extent than 

variations of the permanganate dosing according to previous similar conditions given by 

the CBR model. This way, the daily decision-making can be speeded-up and improved by 

offering consistent and robust results to the users, who can consult the model outputs 

at any time and according to real-time raw water characteristics and operation 

conditions of the plant. 

Moreover, the EDSS architecture allows the addition of expert rules, which act as 

supervisory rules at the top of the control algorithm. It was considered necessary to add 

a rule for lowering the permanganate dose 0.2 mg·L-1 in case of achieving manganese 

concentrations greater than 10 μg·L-1 at the sand filters, to prevent potential overdosing 

of the chemical. The EDSS was implemented at Llobregat DWTP and was tested in 

January-September 2019 period. Figure 22 shows the time-series of daily average of 

permanganate dosing rate proposed by the predictive model versus the one applied at 

full-scale. 

 

Figure 22. Results of the implementation phase of the EDSS. 
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During the studied period, it was up to DWTP users to apply the predicted dose or adjust 

it according to the actual concentration of residual manganese in water and previous 

experience. As a first approximation, the combination of the predictive model with the 

expert rule for lowering the dosing rate at high residual manganese levels was 

considered to be sufficiently good. It was shown that the purposed system did not lead 

to any overdosing of the system, especially in March-April 2019 period, in which high 

concentrations of residual manganese (between 10 and 20 μg·L-1) lead to propose lower 

dosing rates. The laboratory measurements in these cases were all within quality 

specifications. Excess permanganate passing through the filters has to be avoided, since 

it may enter the distribution system and lead to an undesirable taste in water 

(Crittenden et al., 2012). 

After the implementation phase, it was considered that benefits from EDSS include 

providing a baseline operational set-points while maintaining operator’s added-value 

expertise in the process. Modifications on the baseline set-points made by the users 

were recorded for the follow-up of the implementation phase. It is also expected that 

DWTP users will gradually build confidence on predictive model outputs and implement 

them more consistently. It was noted that systems like the developed EDSS may 

contribute to train and support those technical personnel that do not have accumulated 

sufficient experience to run the process, while it serves as a supporting tool for 

experienced users. 
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4.4. Conclusions 

An environmental decision support system to help with the multi-parametric challenge 

of controlling the pre-oxidation step at a full-scale DWTP was implemented. To do this, 

first a systematic procedure for feature selection was done, showing that potassium 

permanganate dose can be best predicted using temperature, turbidity, absorbance at 

254nm and inflow rate as input variables. For model development purposes, multiple 

linear regression and multi-layer perceptron models were compared, and the best data-

driven approach was shown to be a multi-layer perceptron with one node in the hidden 

layer. 

Uncertainties on the model output resulting from model development were quantified 

using a Monte Carlo scheme and validated against historical data. The root squared error 

and R2 of the predictive model was 0.13 mg·L-1 and 0.74 respectively, which was 

considered sufficiently accurate for the utility needs. In lights of integrating the 

predictive model in an EDSS for aiding in day-by-day operation of a full-scale DWTP, a 

case-based reasoning model was developed in order to support model outputs and 

overcome the black-box nature of the predictive model.  

The MLP and CBR models were integrated in a EDSS that gathers data from online 

sensors and analysers and provide real-time support for daily operation. By integrating 

these two kinds of model, the user is informed about uncertainty in model predictions, 

as well as uncertainties related to previous actions with similar operating conditions 

recorded at the historical database. We believe that this system can increase the 

robustness of model predictions and allows the user to become more confident on using 

the EDSS for aiding in decision-making rather than being guide only by previous 

experience. Also, the EDSS architecture demonstrates to be adaptable to specific cases 

and situations out of the scope of the predictive model by the inclusion of expert rules 

at the supervisor level. The EDSS is currently implemented at Llobregat DWTP and has 

been operated as an open-loop control system for 9 months, providing the base-line 

permanganate dosing rate from which operators decided whether to apply it or adjust 

it according their experience to fit more specific cases.  

 



 

61 

5. Results II:  

Benchmarking empirical models for THMs formation in 

drinking water systems and integration into an EDSS. 
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5.1. Background 

Advanced treatments such as GAC filters or membrane technologies have been gradually 

incorporated at DWTPs to remove DBPs precursors and be more resilient in front of 

increasing stringent regulations. Regarding occurrence of DBPs in drinking water, the 

Spanish regulation limits the THMs concentration at 100 μg·L-1 in tap water (RD 

140/2003). 

Llobregat river is one of the main water sources of Barcelona Metropolitan Area (BMA) 

(NE Spain, ca. 4.5 million inhabitants). The quality issues of this Mediterranean river have 

been reported in several studies for the high fluctuations of salinity, natural organic 

matter and temperature (J. L. Fernández-Turiel et al., 2000; Raich-Montiu et al., 2014). 

Also, high concentrations of bromide have been found in the 0.5 - 1.2 mg·L-1 range, 

leading to high concentrations of THMs with most weight on brominated species (Valero 

and Arbós, 2010). This issue motivated, in 2009, the upgrading of Llobregat DWTP by 

adding an electrodialysis reversal (EDR) step to remove DBPs precursors and improve 

organoleptic properties of water. After more than ten years, this technology has been 

proven to be a robust membrane-based technology for treating brackish water and 

reduce DBPs precursors. Removal of >75% for bromide, >60% for chloride (among other 

ionic species) and >30% for TOC were observed in full-scale operation of EDR treating 

brackish water (Valero et al., 2013). 

Membrane-based technologies like EDR are by far the most energetic-demanding 

process of the DWTP, and this poses a challenge for a correct management that struggles 

to find a balance between economic and environmental costs of operation. In order to 

improve the robustness of EDR management, mathematical modelling can help in 

predicting DBPs formation along the supply network and therefore, adjust the fraction 

of conventional-treated water to be blended with EDR effluent. Most of DBPs models 

reported in the literature are empirically modelled with log-linear power functions by 

regressing each one of the water quality parameters influencing DBPs formation (Amy 

et al., 1998; Chowdhury et al., 2009; Golfinopoulos et al., 1998; Lin et al., 2018; 

Platikanov et al., 2007). However, most of these studies have been done using 

laboratory-scale data and these conditions are different from those encountered in real 

water systems (Sadiq et al., 2019). On the other hand, other studies used artificial neural 

networks and reported a better predictive capacity of this data-driven modelling 

technique with better results than multivariable power functions (Kulkarni and Chellam, 

2010; Rodriguez and Sérodes, 2004). Most THMs prediction models include total organic 
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matter (TOC), pH, hydraulic retention time (HRT), bromide (Br), UV absorbance at 254 

(UV254), temperature and initial chlorine dose (DCl) as input variables parameters. These 

variables are suitable for their representativeness on DBPs formation but also because 

they are easy to measure in real-time (Rivadeneyra et al., 2014). Predictive models have 

been used in the water and wastewater treatment field for improving process control in 

Environmental Decision Support Systems (EDSSs) for automated decision-making in full-

scale facilities (Corominas et al., 2017). A recent review of DBPs models in Sadiq et al. 

(2019) concluded that there is still a significant scope to improve the feasibility of using 

these models for operational purposes, and outlined the need for reducing uncertainties 

related to model development and to integrate various modelling techniques, among 

others. 

The goal of this study is to develop an EDSS to help in EDR management in a case-study 

DWTP by keeping THMs concentrations under some user-defined operational thresholds 

along the supply network in a real-time basis. To face this complex system, the objectives 

of the present study are 1) To characterise the full-scale removal performance of EDR on 

main DBPs precursors, 2) To benchmark existing THMs models using field-scale data of 

Llobregat DWTP, and 3) To integrate process knowledge to the calibrated models to 

provide real-time support for EDR management. This should be in favour of a better 

operational control during water treatment process in complex water systems such as 

Mediterranean catchment of BMA. 
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5.2. Methodology 

5.2.1. Case study 

Water was characterised at the outlet of Llobregat DWTP and THMs concentrations were 

measured at different points of the distribution network to have samples describing 

seasonal variations in water quality and operational changes, including different HRTs. 

Main characteristics are summarised in Table 5. 

Table 5. Characterization of water collected at Llobregat DWTP effluent and 

different locations along the supply network (Period March 2019 – March 2020), 

n=573. 

Parameter Units Mean ± Std 10th Percentile 90th Percentile 

UV254 cm-1 2.03e-2 ±  5.6e-3 1.40e-2 2.78e-2 

TOC mg·L-1 1.21 ±  3.4e-1 0.81 1.69 

HRTST h 11.60 ±  21.2 0.00 46.40 

Temperature ºC 17.45 ± 4.9 11.28 25.00 

pH - 7.45 ± 1.9e-1 7.22 7.72 

Bromides mg·L-1 0.36 ± 1.3e-1 0.22 0.51 

DCl mg·L-1 1.21 ± 6.3e-2 1.13 1.29 

THMs μg·L-1 19.52 ± 20.0 0.00 46.92 

 

The hydraulic retention time of water in pipes of the distribution network can have high 

fluctuations and Llobregat DWTP must adapt its effluent water quality to ensure THMs 

will stay in a tolerable range. The ratio of water treated by EDR (XEDR) is the most relevant 

operational parameter regarding this issue. 

 

5.2.2. Modelling framework 

Among the different techniques reviewed in the literature (Chowdhury et al., 2009; 

Sadiq et al., 2019; Sadiq and Rodriguez, 2004), the majority of predictive models for DBPs 

have been based on statistical regression and (most recently) artificial neural networks. 

Therefore, log-linear power functions and multi-layer perceptrons (MLPs) were selected 

for mathematical model benchmarking, and calibration and validation procedures were 

applied to field-scale data of Llobregat DWTP. The organic content of water (measurable 
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through TOC and UV254), pH, Temperature, HRT, bromide ion and free residual chlorine 

were selected as physically meaningful input variables, and also because the easiness of 

online monitoring. 

 

The MLR model was fitted following eq. (1): 

[THM] = a · ([UV254]+1) b · [TOC] c · [DCl] d · ([Br]+1) e · T f · pH g · HRT h  (eq. 10) 

where a, b, c, d, e, f, g and h are empirical constants to be estimated by a comprehensive 

parameter estimation procedure at each model. 

An MLP is composed by an input layer, one or more hidden layers with nonlinear 

activation functions and an output layer. For means of comparison the same kind of 

MLPs described in Kulkarni and Chellam (2010) were tested, that consists of feed 

forward, back propagation MLPs with one or two hidden layers. Different architectures 

with 4-8 nodes in the hidden layers were tested. Referring to the MLP architecture, 

models were named MLPi,j where i and j are the numbers of nodes in the first and second 

hidden layer, respectively. Therefore, a total number of 30 MLPs were tested. 

With the aim of building physically meaningful models, a synthetic sample was 

generated for each observation at time HRT=0 h, assuming that the initial concentration 

at the instant of chlorination was 0 µg·L-1. These samples were included in the dataset 

for training MLP models, but were excluded for calculating performance metrics at the 

validation of models. 

 

5.2.3. Benchmarking of models 

The presence of outliers is expected when dealing with full-scale data due to non-ideal 

experimental conditions. Some factors affecting to this include the status of pipes, re-

chlorination along the distribution network and others. Therefore, a systematic outlier 

detection and removal estimation procedures were followed before comprehensive 

parameter of predictive models (Frutiger et al., 2015). In the present study, the upper 

extreme values are of importance in the context of assessing regulatory compliance with 

DBPs exposure. Therefore, only lower extreme values were removed from the original 

dataset. 

First, data was fitted with a robust regression method using MLR model. Data-points 

below 2.5th and 97.5th percentiles of errors (ε) between observed and predicted values 
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were marked as outliers and removed from the original dataset. After this, the dataset 

was divided into calibration (80%) and validation (20%) datasets to avoid overfitting of 

the models using a self-organising map with selforgmap() function. This method ensures 

that data is divided in a way that calibration and validation datasets have similar 

statistical properties. 

Calibration dataset was used for MLR and MLPs models calibration. Bootstrapping 

method was applied for parameter estimation of MLR and for obtaining a distribution of 

parameter estimators 𝜃. MATLAB® Neural network Toolbox was used for MLPs 

calibration. 

A first validation of the models was done by assessing R-squared and the mean absolute 

error (MAE) of the model predictions versus observed values of THMs for the calibration 

and validation dataset. A good predictive model is the one that balances good 

performance on the dataset which was used for calibration on the model (replicative 

validation) and also on data that was not seen during model development (predictive 

validation) (Humphrey et al., 2017). A first set of models were selected according to this 

criterion. After that, Other methods aimed to check that the model input-output 

relationships were in accordance with the a-priori knowledge of the process were 

applied. The profile method has been used for structural validation of artificial neural 

networks, since it allows a visual interpretation of each input effects on the output 

variable, by fixing the remaining variables at different percentiles (Godo-Pla et al., 2019; 

Humphrey et al., 2017). This method was used to select the most adequate model 

among the previously selected ones. 

 

5.2.4. Model Validation 

Extensive validation procedures were considered necessary to ensure good adequacy of 

the model with the real system requirements and build confidence among users. 

Sensitivity analysis can determine the relative contributions of water quality and 

operational factors in DBPs formation. A sensitivity analysis technique based on 

differential analysis was used on the selected model to rank the contribution of inputs 

on the output. This was done with an aggregated dynamic sensitivity function as the 

delta mean-squared (𝛿𝑖
𝑚𝑠𝑞𝑟

). This relative sensitivity functions is non-dimensional with 

respect to units and can be used to compare the effects of model inputs among each 

other (Sin and Gernaey, 2016). The first order derivative of the model in respect of each 
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input parameter i is evaluated at a nominal value of input variables to calculate absolute 

sensitivity (sai) and the non-dimensional sensitivity function (sri) indices: 

𝑠𝑎𝑖 =
𝑓(𝑥𝑖

0+⁡𝛥𝑥𝑖)−𝑓(𝑥𝑖
0)

𝛥𝑥𝑖
        (eq. 11) 

𝑠𝑟𝑖 ⁡= 𝑠𝑎𝑖 ·
𝑦0

𝑥𝑖
0          (eq. 12) 

where f(x0) is the model function evaluated at the nominal values of input parameters 

𝑥𝑖
0, Δx is the perturbation step (with a perturbation factor ε = 10-3), and y0 is the nominal 

value of the output variable. Lastly, for sri = 1…N values, 𝛿𝑖
𝑚𝑠𝑞𝑟

 is defined as: 

𝛿𝑖
𝑚𝑠𝑞𝑟

= √
1

𝑇
· ∑ 𝑠𝑟𝑖(𝑡)

2𝑇
𝑡=1        (eq. 13) 

Further details on the methodological procedures of sensitivity analysis can be found in 

the literature (Brun et al., 2001; Sin et al., 2009). 
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5.3. Results and Discussion 

5.3.1. EDR performance characterisation 

Operational data from EDR sampling campaigns was collected from 2011 to 2017, 

resulting in a dataset of 220 samples including seasonal variations of raw water quality. 

Main parameters affecting The removals of TOC and Bromides in EDR were modelled as 

regression of temperature, which ranged from, 2 to 26 ºC. EDR technology at DWTP 

Llobregat is programmed to apply higher tensions as temperature of water increases, 

thus favouring a greater DBPs precursor removal with higher temperatures. A part from 

this, temperature by itself increases the diffusivity of ions through the ionic exchange 

membranes and therefore, has a positive effect on EDR removal on different 

compounds. Eq (5), (6) and (7) show the equations derived from the linear regression: 

 

Bromide removal (%) =  62.15 + 0.98 · TCT   (eq. 14) 

TOC removal (%) =  15.36 + 0.98 · TCT    (eq. 15) 

UV254 removal (%) =  22.50 + 1.63 · TCT    (eq. 16) 

Where TCT is the temperature of conventional treated water. R-Squared values of eq. (5), 

(6) and (7) were 0.90, 0.66 and 0.81, respectively. It is expected that negatively-charged 

humic fractions of NOM would show higher correlation than TOC in EDR removal. Since 

this study targets the implementation of algorithms using online available measures, the 

R-squared values found for THMs precursors removal were considered sufficiently 

accurate for the utility needs. 

 

5.3.2. Benchmark of THMs formation models 

After removing outliers, dataset was divided into calibration (80%) and validation (20%) 

datasets and the model candidates were fitted using the calibration dataset. For cross-

validation purposes, the performance of all tested models (MLR and MLPs) on calibration 

and validation dataset in terms of correlation coefficient (R2) were evaluated and are 

shown in Figure 23. 
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Figure 23. Replicative and predictive assessment of MLR and MLPi,j models, where i is 
the number of nodes in the first hidden layer and j the number of nodes in the second 

hidden layer. 

Based on the cross-validation statistics, a first selection of models was done targeting 

the models showing the best balance between replicative and predictive abilities. It can 

be seen that MLR showed high and very similar R-squared values for both calibration 

and validation dataset. On the other hand, MLPs also showed very good performance 

with R-squared statistic of most of the models above 0.80. In the case of MLPs with one 

hidden layer, increasing model complexity by adding nodes (from 4 to 8) resulted in an 

overall performance increase of the model predictive abilities. On the other hand, 

possibly because of overfitting the model, the same was not observed in the MLPs 

architectures containing two hidden layers. The addition of a second layer and the 

increase of the number of nodes in them did not result in a consistent improvement on 

the model’s replicative and predictive performance. 

Therefore, 4 out of the 31 models tested were selected based on their performance in 

the validation dataset: MLR, MLP8, MLP8,5 and MLP8,6. Table 6 shows the main 

performance statistics of these models. 
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Table 6. Main performance statistics of pre-selected models. 

 Calibration Validation 

Model R2 MAE (µg·L-1) R2 MAE (µg·L-1) 

MLR 0.834 4.21 0.888 4.00 

MLP8 0.880 3.23 0.904 3.29 

MLP8,5 0.855 3.53 0.907 3.13 

MLP8,6 0.850 3.68 0.901 3.21 

 

According to the treatment manager of Llobregat DWTP, an error of ±5 µg·L-1 and good 

correlation with historical data (>80%) would be acceptable for using this model at the 

decision-support level at the full-scale plant. All models in Table 6 showed very good 

performances with R-squared values above 0.80 and MAE below 5 µg·L-1 in both 

calibration and validation dataset. Hence, all the described models would be candidates 

fulfilling this criterion. 

To tip the balance among these pre-selected models, the profile method was applied for 

identifying patterns and assessing the plausibility between input-output relationships of 

the models. This method allows to check whether a mathematical model behaves in 

accordance to the a-priori knowledge of the process or not, in a visual manner. Figure 

24 shows the high differences between the pre-selected models regarding the HRT 

profile plot. 
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Figure 24. Profile method plots of the pre-selected models considering HRT as input 
variable: A) MLR; B) MLP8,0; C) MLP8,5; D) MLP8,6. n=573. 

Profile curves of MLR were the most plausible among the tested models. It can be 

withdrawn that in this case, an increase in model complexity did not result in better (or 

expected) input-output relationships. The complexity and nonlinearities found in the 

different tested MLP architectures led to sinuous profiles plots, whereas the exponential 

model showed clearer relationships between inputs and output of the model. 

Differences on these models highlight the need of adequately assessing the structural 

validity of data-driven models. The profile method plots for the other input variables of 

MLR model can be find in the Annex III (A3.1). 
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5.3.3. Model Validation 

Sensitivity analysis was performed on the obtained parameters of MLR model. The main 

characteristics of parameter estimators and δmsqr is shown in Table 7. 

 

Table 7. Parameter estimators of THM predictive model and delta-mean-squared. 

Parameter Mean St. Dev. δmsqr 

a 6.18E+00 1.00E+00 1.72E+00 

b 3.64E+00 1.59E+00 1.26E-01 

c 4.62E-01 3.01E-02 1.58E-01 

d 4.20E-01 1.09E-01 1.37E-01 

e 4.71E-01 5.59E-02 2.51E-01 

f 1.69E-01 2.71E-02 8.30E-01 

g 4.84E-02 6.44E-02 1.67E-01 

h 2.98E-01 6.13E-03 1.26E+00 

 

Table 7 shows that there was no identifiability issues during parameter estimation, 

except for parameter g (corresponding to pH effect). This issue with the pH-related 

parameter can be due to the low variability of pH at the full-scale system, leading to a 

less statistical significance of this parameter. δmsqr values were used as a non-

dimensional sensibility measure for assessing the contribution of model parameters to 

the output variance. Hence the model parameters can be ranked according to δmsqr, to 

compare the importance of input factors. According to these values, the most important 

parameters were a, f and e. These three parameters are related to a constant value (with 

no physical meaning), and to the bromide and temperature terms in eq (10), 

respectively. Other studies revealed organic matter as the most important factor for 

DBPs predictions Kulkarni and Chellam (2010). The obtained results suggest that salinity 

and temperature are the most influential factors to take into account for DBPs control 

in Llobregat DWTP. This quality issues are related mining activities of large salt deposits 

in the upper part of the basin and also related to the Mediterranean climate (J. L. 

Fernández-Turiel et al., 2000). It is also worth-noting that this study is focused in the 

DWTP effluent water, where most of NOM has been removed after the conventional and 

advanced treatment at Llobregat DWTP. 
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In order to visually check the model fit with historical data, a time-series plot of THMs 

concentrations and MLR outputs is shown in Figure 25. 

 

Figure 25. Time series of observed vs model output values of MLR model for samples 
collected at the DWTP effluent and at the distribution network. N=315. 

It was shown that the model performed well during the tested period independently 

from the time of the year, but also from the measured range (no error differences 

between low- and high-measured values). The high difference of THMs values were due 

to the sampling of different points at the distribution network with different HRTs. 

 

5.3.4. Environmental decision support system 

Taking into account the ATL’s supply network characteristics, two critical points (CP1 and 

CP2) with the largest HRTs were selected as indicators for good EDR management. These 

points correspond to the farthest points where Llobregat DWTP can supply water, 

depending on ATL distribution network strategy. Representative HRT values for CP1 and 

CP2 were considered for model predictions, being 48 and 96 h, respectively. A lower- 

and upper-operational value (LOV and UOV) were defined using expert criterion at 70 

and 90 μg·L-1 respectively, to assess the THMs formation risk at the two critical points. 

These two values orientate DWTP managers toward a close monitoring or to take 

corrective measures while THMs concentration is still below the regulation limit (100 

μg·L-1). The predicted THMs concentration at CP1 and CP2 was calculated through a 
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Monte Carlo scheme using the joint multivariate distribution of model parameters 

obtained in during model calibration. This allowed the quantification of uncertainty 

related to the predictive model development. 

Two different water quality scenarios were assessed. Input variables were fixed at their 

10th and 90th percentile of their historical values (conventional treatment effluent) for 

scenario 1 and scenario 2, respectively, in order to be representative from high and low 

quality water cases. The expected THMs concentration at CP1 and CP2 with Scenario 1 

with different EDR operational conditions (XEDR= 0%, 50% and 100%) is shown in Figure 

26. 

 

Figure 26. Boxplots indicating the Monte Carlo outputs of MLR at two critical points 
(CP1 and CP2) when input variables are at the 10th percentile of their historical values. 
The lines of the plot indicate the 25h, 50th and 75th percentile, and whiskers indicate 
the extreme values. A) XEDR=0%; B) XEDR=50%; C) XEDR=100%; LOV: Lower operational 

value; UOV: Upper operational value. 

Under high quality raw water conditions, the expected THMs concentrations at the two 

critical points (CP1 and CP2) would be below LOV (70 μg·L-1). Therefore, DBPs 

concentration would be under acceptable levels and EDR treatment would not be 

necessary for DBPs precursor removal, even this treatment would also favour the 

organoleptic properties of water. 
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Figure 27. Boxplots indicating the Monte Carlo outputs of MLR at two critical points 
(CP1 and CP2) when input variables are at the 90th percentile of their historical values. 
The lines of the plot indicate the 25h, 50th and 75th percentile, and whiskers indicate 
the extreme values. A) XEDR=0%; B) XEDR=50%; C) XEDR=100%; LOV: Lower operational 

value; UOV: Upper operational value. 

Figure 27 shows the THMs formation of raw water quality depicted in scenario 2. It can 

be seen from the Monte Carlo outputs distribution in Figure 6.A that about 75% and 

100% of model predictions would be above UOV for CP1 and CP2 respectively, when 

water is only treated by conventional treatment (XEDR=0%). Additionally, CP2 would be 

even above the regulation limit (100 µg·L-1). Therefore, in the low water quality case, the 

need of an advanced treatment is deemed necessary to fulfil the quality standards at 

both critical points. As expected, an increase of XEDR led to lower DBPs precursors 

concentration and therefore, to a reduction on the predicted THMs values in both CP1 

and CP2, but to different degrees. A mid degree of EDR treatment (XEDR=50%) would 

benefit from delivering water at tolerable levels (between LOV and UOV) at CP1, but CP2 

would keep above UOV. Under these circumstances, the highest EDR treatment 

(XEDR=100%) would permit to deliver water below LOV at CP1 in about 75% of the model 

predictions and at tolerable range (between LOV and UOV) at CP2 in 100% of the cases. 

Given these results, and to ensure quality of water at CP2, other strategies like mixing 

Llobregat DWTP effluent with other water sources containing less DBPs precursors and 

therefore, making dilution effect on DBPs concentrations could be contemplated. 

To communicate results with the user, a key performance indicator in form of a traffic 

light was built for CP1 and CP2. A green colour of the traffic light corresponded to 50% 

of predicted THMs (50th percentile) being below LOV. The yellow light was assigned when 

the 50th percentile of predicted THMs were between LOV and UOV, indicating that 

process monitoring should be enhanced at this point. Finally, a red colour would appear 

when 50th percentile of predicted THMs are above the UOV, indicating that corrective 
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measures should be taken to lower down the THMs at the analysed critical point. In the 

present case, corrective measures include: Increase the EDR ratio at the advanced 

treatment (XEDR), improve the organic matter removal at the conventional treatment, 

reduce the HRT at the distribution network or mixing Llobregat DWTP effluent water 

with other water sources with less DBPs precursors. The final aim of the EDSS is to 

achieve the maximal sustainability by balancing the environmental, economic, and 

health effects of the advanced treatment management at Llobregat DWTP. The 

proposed EDSS flow scheme is shown in Figure 28. 

 

Figure 28. Flow scheme of EDSS 

The proposed system allows to communicate the effects of the DWTP operational 

conditions on the DBPs formation depending on raw water quality, including 

uncertainties related to model predictions. The operation of the supply network 

depends on multiple factors such as the availability of water sources, water demand, 

and maintenance works. The EDSS can help in the daily-decision making of the plant for 

an adequate operation, responding to influent water quality variations and network 

requirements. The need for choosing different critical point was confirmed, since they 

might require different degrees of treatment. 
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5.4. Conclusions 

 

In this study, the formation of trihalomethanes (THMs) was empirically modelled for 

managing the advanced treatment process of a full-scale DWTP. To this end, several 

mathematical models reported in the literature were evaluated and compared, using 

online-available parameters as input variables. These models included a multiple linear 

regressions (MLR) and multi-layer perceptrons with one and two hidden layers. Models 

performing best predictive validation were selected for further analysis, and finally the 

MLR model was chosen because its greater ability to describe the best input-output 

relationships and better extrapolation, especially regarding the hydraulic retention time 

component. The selected model exhibited good fit with the validation data set (R2= 0.88 

and MAE= 4.0 µg·L-1) and was incorporated into an environmental decision support 

system for managing the EDR. Two points of the DWTP distribution network were 

selected as critical points to assess THMs formation. The developed model enabled to 

communicate the uncertainty of model predictions and classify the expected THMs 

concentration at these points according to thresholds established by the DWTP 

managers. This study explores the use of predictive models and makes a step forward 

into the integrated management of complex drinking water distribution networks which 

can face important changes in raw water quality in short time periods. 
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6. Results III.  

Control of primary disinfection in a drinking water treatment 

plant based on a fuzzy inference system. 
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6.1. Background 

Primary disinfection occurs early in the water treatment process and provides the first 

chemical barrier against microbial pathogens at DWTPs. At the operation level, while 

maintaining an effective disinfection has the highest priority and should not be 

compromised, it is also important to minimize the formation of DBPs at the DWTP and 

supply systems. Strategies for the control of DBPs in DWTPs includes removing the 

precursors of DBPs, utilizing alternative disinfectants and/or removing DBPs after its 

formation (World Health Organization, 2017). Regarding the disinfection process, 

alternative chemicals such as chlorine dioxide, potassium permanganate and advanced 

oxidation processes have replaced chlorine at the inlet of many DWTPs to avoid the 

formation of THMs (Hu et al., 2018; Sillanpää et al., 2018). While primary disinfection is 

operated as a first barrier against pathogens and to prevent the microbial growth along 

the treatment train, secondary disinfection ensures that water has a minimum 

disinfectant along the supply system. Therefore, different chemicals can be used for 

primary and secondary disinfection process. 

One approach that has been used in Ter DWTP (located near Barcelona, NE Spain) for 

the primary disinfection is the combined dosing of sodium hypochlorite and chlorine 

dioxide. There are published reports from laboratory tests that reveal synergistic 

benefits from using two or more disinfectants, i.e. the overall inactivation is greater than 

the sum of the inactivation achieved for each disinfectant individually (World Health 

Organization, 2004). This fact supports that chlorine dioxide and sodium hypochlorite 

can be dosed in conjunction to maintain and/or improve the disinfection efficiency and 

reduce THMs formation (Chowdhury et al., 2009; Yang et al., 2013) by adjusting the 

contribution of free chlorine to the overall disinfection. 

Mediterranean regions are characterised by having strong variations in surface water 

quality and quantity, and they are affected by the degradation trend of drinking quality 

under global change (Delpla et al., 2009). In this framework, the evaluation of the DBPs 

formation in a consistent manner is needed. The adoption of digital solutions in 

operating DWTPs and the development of advanced control systems using Artificial 

Intelligence (AI) aims to optimise the workforce (including decreasing the need for 

emergency call-outs), ensure regulatory compliance and increase the resilience of a 

facility for a changing environment (Makropoulos, 2019; Sarni et al., 2019). 
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Knowledge-based models such as fuzzy inference systems (FISs) are modelling 

techniques that become suitable for consolidating the process engineering knowledge 

gained from experience and observations with operating a certain system (Kelly et al., 

2013). In the environmental domain, these systems have been used in the water and 

wastewater treatment field to improve process control and can been incorporated into 

EDSSs for automated decision-making in full-scale facilities (Corominas et al., 2017). FISs 

have been used in drinking water treatment to predict coagulant dose from raw water 

characteristics (Lamrini et al., 2014) or to support the selection of disinfectants at DWTPs 

(Chowdhury et al., 2007). 

The objective of this study is to develop a control system based on FIS that combines the 

available data, scientific theory and expert opinion to predict the mixed oxidants dose 

for the primary disinfection in a full-scale DWTP. The purposed strategy aims to control 

the DBPs formation in terms of THMs, chlorites and chlorates using real-time data from 

commercially available sensors. 
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6.2. Methodology 

6.2.1. Case study 

The control system has been developed and implemented in Ter DWTP. Primary and 

secondary disinfection have an important influence on DBPs formation. Primary 

disinfection is done as a first microbial barrier and to prevent growth along the 

treatment train, and secondary disinfection ensures that water has a minimum 

disinfectant residual along the supply system. To ensure the microbiological safety of 

water and to avoid recontamination along the supply network, secondary disinfection at 

Ter DWTP is operated targeting a Clfree of 1.0 mg·L-1. Thus, regarding the disinfection 

processes, DBPs formation is mainly controlled at the primary disinfection by adjusting 

the dosing rate of sodium hypochlorite (NaOClDose) and of chlorine dioxide (ClO2 Dose). 

Raw water presents quality variations related to seasonal and year-to-year fluctuations 

in the reservoirs, and main characteristics are summarised in Table 8. The fluorescent 

dissolved organic matter at raw water (fDOMRW) was measured by means of an EXO 2 

fDOM smart sensor (YSI, USA). Electrical conductivity (EC) was measured with an 

electrical conductivity meter (Multimeter MM41, Crison, Hach-Lange, Spain). Turbidity 

was measured by means of Hach 2100 NTurbidimeter (Hach-Lange, Germany). UV 

Absorbance at 254 nm (UVA254 RW) was measured with an 8453 UV–vis 

Spectrophotometer (Agilent, USA). Free chlorine at the mixing chamber (Clfree MC) was 

measured using a colorimetric chlorine online analyser CL17 (Hach Lange, Germany). The 

presence of chlorine dioxide has positive interference on this measure and therefore, 

the free chlorine reading is used to assess the combined dosing of sodium hypochlorite 

and chlorine dioxide. THMs concentrations at the storage tanks (THMST) was monitored 

with THM-100 online analyser (Aqua Metrology Systems, USA). 
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Table 8. Main characteristics of Ter DWTP influent and operation conditions. 

(31/1/2019 - 31/11/2019, n=359). 

Parameter Units Mean ± Std 10th Percentile 90th Percentile 

QRW m3·s-1 4.81 ± 1.51 3.05 6.85 

TempRW ºC 12.4 ± 2.1 9.9 15.3 

fDOMRW mmHg 27.90 ± 8.21 18.82 37.00 

ECRW µS·cm-1 364 ± 35 326 407 

TurbRW NTU 28.6 ± 42.4 1.0 99.0 

UVA254 RW m-1 6.66 ± 0.72 5.83 7.48 

QRW: Inflow rate; TempRW: Raw water temperature; fDOMRW: Raw water fluorescent dissolved 
organic matter; ECRW: Raw water conductivity; TurbRW: Raw water turbidity; UVA254RW: Raw 
water UV absorbance at 254 nm. 

 

6.2.2. Fuzzy inference systems 

FISs are an AI modelling technique that uses the available process knowledge to build a 

set of rules using fuzzy logic, emulating the human decision-making process. Mamdani’s 

fuzzy inference method (Mamdani and Assilian, 1999) was chosen to develop the FIS 

algorithm with the Fuzzy Logic Designer Toolbox in MATLAB 2015b (Mathworks®, USA). 

The main parts of this algorithm are: 1) Fuzzification of input variables, where fuzzy sets 

of inputs are represented by membership functions; 2) Rules, where fuzzy if-then “rules” 

between input and output variables’ attributes are defined on the basis of expert 

knowledge, and 3) Defuzzification, where the fuzzy output variable is transformed to a 

crisp output. FIS can incorporate high-level expertise to aid in problem solving. 

Moreover, it can represent imprecision related to human classification by means of fuzzy 

inference engines. 

 

6.2.3. Design of the environmental decision support System 

EDSS are tools designed to aid in daily decision making. These kind of structures allows 

the integration of different mathematical models (physical/mechanistic models, 
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statistical, AI) to describe a specific problem, and have been extensively used in the 

water treatment field (Raseman et al., 2017). The methodology and architecture for 

building EDSS followed in this study can be found in Poch et al. (2004), which consists in 

three levels, named: Data acquisition level, Control level and Supervisor level. MATLAB 

R2015a was used for developing the graphical user interface to allow the communication 

of EDSS results to the users and for validation purposes. The EDSS development included 

various stages such as problem formulation, knowledge elicitation, model selection and 

design of the validation and implementation phase. These tasks were performed 

collaboratively between academics and the Research, Development and Innovation 

(RDi) and Operation Departments of the case study DWTP. This work aimed to 

incorporate the interests, incentives and pressures from the different stake-holders 

involved in this process and to foster a successful application of the tool (Rieger and 

Olsson, 2012). A description of the three levels composing the proposed EDSS is 

described at the following sub-sections. 

 

6.2.3.1. Data acquisition level. 

The data acquisition level gathers data from the SCADA of the DWTP and is responsible 

for the inputs for the control and supervisor levels. The values used in the algorithms 

correspond to instantaneous readings from online sensors and analysers, except for the 

Total Organic Carbon at raw water (TOCRW), which is estimated using a multiple linear 

regression. Dissolved organic matter fluorescence is demonstrated to correlate with TOC 

concentration (Baker et al., 2008). To estimate TOCRW in real-time, a linear regression of 

analytical values with fDOMRW (including an interaction term with TRW) was performed, 

as shown in Eq. (1): 

TOCRW = k1·fDOMRW + k2·fDOMRW·TRW     (eq. 17) 

where k1 and k2 are model parameters estimated by a least squares method (R2=0.78, 

N=376). The high correlation indicates that fDOMTW and TRW are suitable for predicting 

TOCRW for the studied water. Data used for this regression is shown in the Annex IV 

(A4.1). 
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6.2.3.2. Control level 

Primary disinfection at Ter DWTP is controlled by fixing ClO2 Dose and Clfree,MC. For the 

design of the EDSS, several factors regarding the formation of DBPs have to be 

considered, which play a role in the daily decision-making of the plant. THMs formation 

risk (THMFR) can be assessed with the quality of raw water, operational parameters and 

environmental conditions (Chowdhury et al., 2009). 

Regarding the raw water quality influence on THMFR, quality parameters related to 

NOM and bromide concentration can be monitored. These substances react with 

chlorine and chlorine dioxide to produce DBPs. At the present study, TOCRW was used as 

bulk property influencing DBPs formation in drinking water (Delpla et al., 2009; Suquet 

et al., 2020) since there was no presence of bromide or other inorganic substances 

affecting DBPs formation at Ter DWTP raw water.  

pH and HRTST are the main manipulated variables that influence DBPs formation at Ter 

DWTP. Carbon dioxide is dosed at the inlet of the plant targeting a pH of water at 7.7. As 

a consequence, HRTST was the only variable taken into account when assessing THMFR, 

and it depends on the daily water demand. Last, TRW accounts for the main 

environmental conditions affecting THMs formation. Apart from the seasonal variations, 

TRW also depends on the depth in which raw water is taken from the reservoir (different 

catchment heights can be selected), and can have periodic variations with the aim to 

look for the best source water quality. 

 

6.2.3.3. Supervisor level 

The supervisor level acts at the top of the EDSS actions and can incorporate several rules 

or models that merge the conclusions derived from the control level (Poch et al., 2004). 

Two supervisor modules were proposed for adjusting the control level output for the 

primary disinfection: Supervisor level for effluent water quality (SL1) and supervisor level 

for the formation of other DBPs (SL2). 

SL1 aims at identifying any variability and uncertainty in the process that is not explained 

by the control level. This can be related to changes in the NOM composition that affect 

THMs formation potential described by other surrogate measures (Awad et al., 2018; 

Golea et al., 2017). Also, this algorithm evaluates the THMST and takes into account the 

effect that variations in HRTST has in THMs formation. Hence, the algorithm in SL1 acts as 



Chapter 6: RESULTS III 

87 

a feedback control system, regulating the primary disinfection set-points according to 

the THMST measure. 

SL2 was designed for ensuring compliance with effluent water quality regulations 

regarding chlorate and chlorite. Since there are so many variables linked with chlorite 

and chlorate concentration at the DWTP effluent and guided by previous experience of 

the full-scale plant managers, SL2 objective is to limit the total amount of NaOClDose and 

ClO2 Dose added to water at the primary disinfection step. This way, high concentrations 

of chlorites and chlorates in the effluent water are avoided. 

A general structure of the EDSS for the present study is shown in Figure 29. 

 

 

Figure 29. Hierarchical structure of EDSS employed in this study 
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6.3. Results and Discussion 

In this section, the development and implementation of the advanced control system is 

discussed.  

6.3.1. Development of the control level of EDSS 

A first FIS algorithm (FIS1) was developed for assigning ClO2 Dose and Clfree MC set-points by 

assessing the THMs formation risk (THMFR) as a feed-forward control system. TOCRW and 

TRW were selected as the main quality parameter and environmental condition to assess 

the raw water THMFR. These two parameters were chosen according to the availability 

of online measures, and were supported by the DWTP process experts. 

Following the hierarchical structure of EDSS, the control level contains FIS1 algorithm and 

sets the order of magnitude of the expected primary disinfection operational set points 

(ClO2 Dose and Clfree MC) in a feed-forward manner. The main objective of this algorithm is 

to prioritize ClO2 over NaOCl dosing where THMFR is high and hence, reduce the 

formation of THMs in these situations. Expert opinion and historical data on the 

relationship between TRW and TOCRW values and THMFR in the treated water was used 

for the development of FIS1. Figure 30 shows the triangular fuzzy set membership 

functions defined for input and output variables.  

According to FIS1, THMFR is positively correlated with TOCRW and TRW, which is in 

accordance with the a priori knowledge of the process and predictive models that can 

be found in the literature (Chowdhury et al., 2009; Golea et al., 2017; Kulkarni and 

Chellam, 2010). 

Regarding the primary disinfection set-points assignment and according to the historical 

operation of the DWTP, it was assumed that a maximum THMFR corresponded to 1.2 

mg·L-1 and 0.65 mg·L-1 for ClO2 Dose and Clfree MC, respectively. On the other hand, a 

minimum THMFR should correspond to 0.3 mg·L-1 and 1.5 mg·L-1 of ClO2 Dose and Clfree MC, 

respectively. Intermediate THMFR were interpolated from these two extremes and rules 

established for the fuzzy inference is shown in Table 9.  

The cases selected for building up the membership functions and the inference system 

were aimed at providing good effluent quality, targeting a THMs concentration at the 

effluent of the DWTP in the range of 25-45 µg THM·L -1 in order to ensure levels well 

below the regulation limits along the distribution network. 
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Table 9. Inference rules used in FIS1. 

Rules Inputs (If…) Outputs (Then…) 

1 TOCRW is Low and TRW is Low 

ClFree is Maximum 

and 

ClO2 Dose is Minimum 

2 

TOCRW is Low and TRW is Medium 

or 

TOCRW is Medium and TRW is Low 

ClFree is High 

and 

ClO2 Dose is Low 

3 

TOCRW is Low and TRW is High 

or 

TOCRW is Medium and TRW is Medium 

or 

TOCRW is High and TRW is Low 

ClFree is Medium 

and 

ClO2 Dose is Medium 

4 

TOCRW is Medium and TRW is High 

or 

TOCRW is High and TRW is Medium 

ClFree is Low 

and 

ClO2 Dose is High 

5 TOCRW is High and TRW is High 

ClFree is Minimum 

and 

ClO2 Dose is Maximum 
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Figure 30. Membership functions for the inputs (a, b) and output variables (c, d) of FIS1.  

 

6.3.2. Development of the supervisor level 1 of EDSS 

 

The algorithm in SL1, named FIS2 is also based on fuzzy-logics is described in this section.  

Given a certain composition of NOM and environmental conditions, the THMST measure 

will vary depending on the operational conditions of the DWTP (controlled by HRTST). At 

the same time, given a certain environmental and operational conditions at the DWTP, 

THMST will vary depending on the NOM quality and quantity. Since NOM quantity is 

already assessed in FIS1, changes in raw water quality (and not measurable with TOCRW) 

affecting THMs formation can be assessed in FIS2 with THMST and HRTST as inputs. The 

supervisor factor (SF) is defined in FIS2 to adjust the ratio between the free chlorine and 

chlorine dioxide dose. Hence, the outputs of this supervisor algorithm are the variation 

on the amount of free chlorine and chlorine dioxide dose with respect to the FIS1 
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outputs, named ΔClFree and ΔClO2, respectively. Table 10 and Figure 31 show the 

inference rules and the membership functions designed for FIS2, respectively. 

According to the purposed algorithm, the SF is increased as the THMST increase and HRTST 

decreases. Also, as THMs increase, the effect of HRT becomes less important and the SF 

effect becomes greater. This asymmetric inference was designed to have more intense 

responses of the SL1 in front of THMs increments and to avoid THMST peaks. 

 

Table 10. Inference rules used in FIS2. 

Rules Inputs (if…) Outputs (then…) 

1 THMST is Low and HRTST is High 

ΔClFree is Minimum 

and 

ΔClO2 is Minimum 

2 

THMST is Low and HRTST is Medium 

or 

THMST is Medium and HRTST is Medium 

ΔClFree is Low 

and 

ΔClO2 is Low 

3 

THMST is Low and HRTST is Low 

or 

THMST is Medium and HRTST is Medium 

or 

THMST is Low and HRTST is Low 

ΔClFree is Medium 

and 

ΔClO2 is Medium 

4 

THMST is Medium and HRTST is Low 

or 

THMST is High and HRTST is Medium 

or 

THMST is High and HRTST is High 

ΔClFree is High 

and 

ΔClO2 is High 

5 THMST is High and HRTST is Low 

ΔClFree is Very High 

and 

ΔClO2 is Very High 

6 THMST is Very High 

ΔClFree is Maximum 

and 

ΔClO2 is Maximum 
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Figure 31. Membership functions for the input (a, b) and output variables (c, d) of FIS2 

 

6.3.3. Development of the supervisor level 2 of EDSS 

In order to predict the required NaOClDose for a specific ClFree MC and ClO2 Dose a linear 

regression was done with full-scale data from primary disinfection following the type: 

𝐶𝑙𝐹𝑟𝑒𝑒,𝑀𝐶 = 𝑎1 · 𝐶𝑙𝑂2,𝐷𝑜𝑠𝑒 + 𝑎2 · 𝑁𝑎𝑂𝐶𝑙𝐷𝑜𝑠𝑒     (eq. 18) 

Where a1 and a2 are 0.294 and 0.613, respectively, and are calculated from a linear 

regression (R2= 0.71). A plot of the fitted data and model outputs calculated from (18) is 

shown in the Annex IV (A4.1). 

A decision tree for adjusting the proposed operational set-points to avoid high 

concentration of chlorites was developed and is shown in Figure 32. 
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Figure 32. Workflow for supervisor level 2 of primary disinfection EDSS. 

 

Once a NaOClDose has been estimated for a certain ClO2 Dose and ClFree MC setpoints, the 

total combined dose must not surpass 2.2 mg·L-1 at the primary disinfection. This limit 

was decided upon previous experience of plant managers. If this condition is not met, 

ClFree MC setpoint is recalculated by lowering the NaOClDose until the condition is fulfilled.  

 

6.3.4. Implementation and validation of the environmental decision 

support System 

The developed EDSS was implemented at Ter DWTP. The EDSS acted as an open-loop 

control system with feed-forward and feed-back components for the 6-months study 

period (1/3/2019 – 1/9/2019). During this validation phase, it was up to the DWTP users 

whether to apply the proposed operational set-points or not and were asked to justify 

the cases in which EDSS outputs were not applied, forming a human-in-the-loop control 

system. This way, the system collects, transmits and analyses data to provide 

information to the DWTP users, who make the operational decisions to be implemented 

through the control system (Yuan et al., 2019). 

The EDSS outputs during the time the EDSS was implemented were compared with a 

similar period without the fuzzy control system. Figure 33 shows the operational set-
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points for the primary disinfection in similar periods with and without the developed 

fuzzy control system.The EDSS outputs and DBPs concentration during the time the EDSS 

was implemented at the full-scale plant are shown in and Figure 34, respectively. 

 

Figure 33. Time series of primary disinfection operational set-points. A) During a period 

without the fuzzy system and B) During a period applying the fuzzy control system.  

By comparing the system’s operation in the two periods (with and without the control 

system) it can be observed some differences regarding the frequency in varying the 

operational set-points. For example, in Figure 33.A, it can be seen that chlorine dioxide 

dose was adjusted more frequently than the period without using the control system. 

This might be because quality and operational conditions vary in a daily basis, and this 

could be assessed systematically by means of the fuzzy control system. The model 

outputs were positively validated 194 out of 227 times (85.5%) during the studied 

period, meaning that EDSS recommendations were implemented for full-scale 

operation. Also, even it was not the goal of the proposed control system, a reduction of 

about 4.2% and 0.7% in the chlorine dioxide and sodium hypochlorite dosing, 

respectively, was observed comparing the results with the period without using it. These 

percentages were calculated using the daily averages of chemical dosing rates. 
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Figure 34 shows the DBPs concentrations monitored at Ter DWTP during the 

implementation phase of the EDSS, also compared with a similar period without the 

developed control system. 

 

 

Figure 34. Time series of DBPs concentrations at Ter DWTP effluent: A) During a period 
without the fuzzy control system and B) During a period applying the fuzzy control 
system.  

In terms of THMs and chlorites formation, no significant differences were found between 

the two periods. The overall performance of the control system during the studied 

period was satisfactory in terms of THMST and chlorites, staying in a tolerable range (30 

- 45 µg·L-1 and 60-210 µg·L-1, respectively) to supply along the water supply system.  

Variations in raw water quality lead to adjustments of the operational set-points by both 

the control and supervisor level of the primary disinfection EDSS. Evolution of input 

parameters over time during the studied period, as well as detailed responses of the 

control level, SL1 and SL2 can be found in the Annex IV (sections A4.2 and A4.3, 

respectively). It is shown that TOCRW values ranged from 1.6 to 3.0 mg·L-1 and TRW 

between 10 and 16ºC, and this is reflected in the slightly modified responses of the 
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control level. The control level responses were in the 1.0 to 1.3 mg·L-1 range for Clfree MC, 

and in the 0.5-1.0 mg·L-1 range for ClO2 Dose set-points. During this period, it was shown 

that even there was feed-forward responses of the control level regarding THMFR, there 

was the need to further adjust the operational set-points according to the THMST 

variations. Therefore, a supervisor level to adjust these unexpected changes as a feed-

back control strategy was necessary. These unexpected variations on the DBPs 

formation can be linked to possible variations of NOM fractioning or quality of water not 

measurable with surrogate measures like TOCRW (Golea et al., 2017). 

The supervisor level showed short-time variations on the responses compared to the 

control level, and these were due to changes in operation of the supply network and also 

changes in THMST concentration. The intensity of the supervisor level was the highest 

with high THMST, leading to lower the Clfree MC and to increase the ClO2 Dose. These cases 

were seen the greatest around day 30, 60, 105 and 130. 

Model outputs were not applied in 33 out of 227 cases. Reasons accounting for the cases 

were: too high Clfree MC (33.3%), too high ClO2 Dose (48.5%), too low ClO2 Dose (15.2%) and 

others (3.0%). The inputs and outputs of the EDSS, as well as justifications provided by 

the users were recorded for follow-up and validation purposes. This provided a useful 

database that can be used for assessing EDSS performance and if necessary, to support 

modifications on the model parameters.  

6.3.5. Implications for drinking water treatment 

Expert knowledge has been used to control DBPs formation at the primary disinfection 

step by integrating the outputs of different algorithms in the hierarchical structure of 

the EDSS (data acquisition, control and supervisor level). The presented study 

demonstrates that with few on-line available measures such as TOCRW, TRW and THMST, a 

disinfection process can be controlled to avoid high concentration of DBPs consistently. 

Fuzzy-logic systems combine available data, scientific theory and expert opinion, and this 

allowed handling complex non-linear phenomena such as DBPs formation in DWTP using 

commercially available online sensors. In the present study, a data-driven approach was 

not convenient due to the few availability of data and the high correlation of water 

quality and operational parameters that occur in drinking water processes (Baxter et al., 

1999), leading to models that may render good replicative accuracy but which results 

might not be physically plausible. As outlined in Krueger et al. (2012), qualitative 

reasoning in systems like FISs can be powerful tools to provide a basis of action on 

complex systems before inconclusive evidence becomes available. 
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To support the knowledge-based AI technique choice, it was considered important that 

the system was able to report the outputs of the models to the DWTP managers and 

operators in a user understandable manner, so model parameters can be accordingly 

tuned. Also, this flexible approach allows the users to add new rules if deemed 

necessary. For example, as more data and knowledge about the occurrence of still non-

regulated DBPs is provided (such as haloacetic acids or N-nitrosodimethylamine), new 

criteria can be incorporated for DBPs management at DWTPs.  

FISs were deemed as excellent candidates for modelling the consolidating the 

accumulated experience of full-scale operation of a DWTP. From the academic side, the 

collaborative work makes sure that the scope of EDSS fits users’ needs and interest. On 

the other hand, practitioners taking part in the modelling process are informed about 

the modelling assumptions and limitations. This latter part underpinned the application 

of the developed EDSS at the full-scale plant. Once implemented, it was shown that the 

system provided DWTP operators with augmented capacity for decision-making at 

DWTP, which was considered important since usually operators are working in shift-

schedule and decisions have to be taken out of the office hours. 

 

6.4. Conclusions 

 

Fuzzy inference systems (FISs) were used to control the combined oxidants dose in the 

primary disinfection step of a DWTP. The developed models were integrated into an 

environmental decision support system for aiding in the daily decision-making of the 

plant. The control level of the EDSS consisted in a feed-forward control system that 

assesses the THMs formation risk, and the supervisor level adjusted the operational set-

points regarding the actual THMs concentration at the effluent in a feed-back manner. 

The proposed system allowed to control disinfection by-products (DBPs) formation using 

commercially-available sensors and process knowledge of the full-scale plant. 

Phenomena not fully understood such as composition of the natural organic matter 

could be dealt with this system and the primary disinfection process of a DWTP. The 

performance of the developed fuzzy control system was compared using a similar 

control period, and it was observed that the EDSS allowed a more systematic adjustment 

on the operational set-points by assessing the quality and operational conditions in a 

daily-basis. The recommendations of the EDSS were applied at the case study DWTP 

about 85.5 % of the time during a 6-month period, with THMs concentrations being in a 
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tolerable range (between 30 and 45 µg·L-1). Therefore, the results were satisfactory in 

terms of DBPs formation according to the utility needs. The user-understandable 

reasoning of FISs improved user engagement on the use of advanced control systems for 

the management of complex drinking water processes. Above all, the presented 

methodology can be of interest to DWTP practitioners who wish to systematise the 

decision-making and to develop control strategies for managing DBPs formation. 
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7. Results IV  

Development of a key performance indicator based on 

quantitative microbial risk assessment for a drinking water 

treatment plant 
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100 

 

 



Chapter 7: RESULTS IV 

101 

 

7.1. Background 

Regarding the microbiological safety of drinking water, several guidelines have been 

established for ensuring an adequate removal of pathogens along the treatment process 

and meet health-based targets at both national and international level (Medema et al., 

2006; USEPA, 2003, 1998; World Health Organization, 2016).  

Quantitative microbiological risk analysis (QMRA) is a probabilistic approach typically 

performed at a design stage of DWTPs to check whether a water system is able to cope 

with the expected pathogen load in the source water. Its assessment consists basically 

four steps: 1) Hazard identification; 2) Exposure assessment, 3) Dose-response and 4) 

Risk characterisation. The annual probability of infection and the disability-adjusted life 

years (DALY) are commonly used metrics that are useful for quantifying and comparing 

the burden of disease associated with water-related pathogens. In this regard, the World 

Health Organization has defined a tolerable burden of disease of 10-6 DALY per person 

per year for individual components in drinking water (World Health Organization, 2017).  

Among other possible microbial indicators like Giardia, Escherichia Coli or rotavirus, 

Cryptosporidium has been reported as a conservative protozoan species for QMRA 

analysis of surface water DWTPs, because of its higher infectivity and resistance to 

chemical disinfection (Pecson et al., 2017; Teunis et al., 1997; World Health 

Organization, 2009). These microbial indicators are often difficult to detect along the 

drinking water treatment process, and this pose a challenge to assess the exposure of a 

certain pathogen. Because of this, surrogate parameters are frequently used for 

assessing the microbiological quality of water at DWTPs. Due to the difficulty of having 

site-specific data, most QMRA relies on reported values of removal efficiencies for 

conventional treatments like coagulation/flocculation and rapid filtration, but these 

efficiencies depend on the process performance and can suffer short-time variations 

(Medema et al., 2006; Teunis et al., 2009). Despite the inherent variabilities and 

uncertainties of QMRA calculations, this method remains recognised as the best 

approach to water safety (Bichai and Smeets, 2013). 

In the framework of global change and increasing water scarcity, non-conventional 

water sources such as recycled wastewater (through direct or indirect reuse schemes) 

can play a key role in integrating water supply strategies (Purnell et al., 2020), but this 

can lead to increase the pathogen load in existing DWTPs which were initially designed 
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for this. Moreover, due to growth of population, utilities are expected to increase 

flowrate to fulfil supply network requirements at the expenses of a possible worsening 

of the treatment performance. The occurrence of relatively extreme events in source 

water and treatment perturbations can lead to intolerable scenarios being unrecognised 

as such (Owens et al., 2020; Teunis et al., 2009, 1997). All these factors put a question 

mark on whether existing utilities are able to handle possible future scenarios and under 

which circumstances. As a result, the need for early-warning systems and strategies to 

detect and respond to acute events in drinking water systems is highlighted. 

Digitalisation of industry is shifting DWTPs towards a more predictive and informed 

operation by using real-time data provided by sensors like quality, flows and other 

operational parameters (Sarni et al., 2019). In this sense, detrimental events in the water 

treatment process can be prevented by informatics systems. Different studies support 

that turbidity, rainfall and flowrate have positive relationship with indicator 

microorganisms (Tryland and Eregno, 2015), but a direct quantification with them might 

be very site-specific and difficult. Some attempts using data-driven models like Bayesian 

Belief have been applied successfully for surface water quality (Panidhapu and Li, 2020), 

but the availability of consistent data is sometimes difficult. Moreover, the development 

of process-based indicators for assessing the microbial removal efficiency is challenging.  

Key performance indicators (KPIs) are automatic, real-time indicators of a system 

commonly used in the smart industry that consolidate information coming from 

different devices. KPIs can be represented in end-user applications as traffic lights 

(informing for good, acceptable and bad status) for informing about the status of a 

system to a user in an intuitive way. The objective of this study is to develop a KPI related 

to the microbiological safety in a DWTP and integrate it as a tool to aid in daily decision-

making. By means of commercially-available sensors, we propose to set the expected 

pathogen load and to monitor the performance of DWTP based on knowledge-based 

process performance indicators. The steps followed for the development of the QMRA-

based KPI are presented for a case study DWTP in Barcelona area (NE Spain), and 

different treatment scenarios are discussed, using Cryptosporidium as the most 

conservative microbial indicator present in raw water. 
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7.2. Methodology 

7.2.1. Case study 

The present study is focused in Ter DWTP, managed by Ens d’Abastament d’Aigua Ter-

Llobregat (ATL) and located near Cardedeu (NE Spain). 

 

7.2.2. QMRA Framework 

In this section, the main parts of QMRA concerning the DWTP domain (catchment, 

treatment and effluent quality) are summarized. 

 

7.2.2.1. Hazard identification 

In order to characterize the expected Cryptosporidium concentration at the influent of 

DWTP, an assessment of source water pathogens in baseline, high and peak 

concentrations was done using the 50th (median) and 100th percentile (maximum) of the 

historical database. Due to the complexity of the analytical method for determining 

Cryptosporidium concentration in water, there is few availability of data. On the other 

hand, Clostridium perfringens is used as a surrogate parameter for assessing 

Cryptosporidium occurrence in raw water. Table 11 shows a summary of microbiological 

quality of Ter DWTP source water collected in 2010 – 2020 period. 

 

Table 11. Pathogen load characterisation at Ter DWTP influent during years 2000-

2020. NT= Number of total analysed samples; NP: Number of positives samples; 50th 

and 100th percentile values of samples are calculated using only the positives. 

Group Indicator Units NT NP 
50th 

percentile 

100th 

percentile 

Bacteria Clostridium 

Perfringens 
CFU/100ml 3401 3249 6 275 

Protozoa Cryptosporidium oocysts/L 112 5 0.1 0.2 
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7.2.2.2. Exposure assessment 

Pathogens may be reduced to different levels along the water treatment process 

depending on their properties and also on the performance of the treatment process. 

The removal efficiency is expressed as the reduction in numbers of a particular 

microorganism between two designated locations in the treatment process. In order to 

estimate the exposure of pathogens, the logarithmic reduction value (LRV) of each 

treatment unit has to be assessed. 

The continuous stirred tank reactor (CSTR) model is recommended for treatment 

assessment of chemical inactivation at full-scale plants (Medema et al., 2006). The CSTR 

model (Eq. 1) was applied for the primary disinfection with sodium hypochlorite and 

chlorine dioxide: 

𝐿𝑅𝑉𝐷𝑖𝑛𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = − log(
1

1+𝑘𝑒·𝑐·𝑡ℎ
⁡)    (eq. 19) 

where ke=5.4·10-3 L·mg-1·min-1 is the first order reaction constant for chlorine dioxide, c 

is the chemical dose and th is the contact time. Inactivation by sodium hypochlorite was 

considered to have negligible effects. 

Physical separation processes performance can be affected by several operational and 

quality factors, resulting in a wide range of empirically reported removal values in the 

literature. For example, coagulant dosing failure, rapid change in water quality and 

breakthrough are events that may lead to significant fluctuations in pathogen reduction 

(World Health Organization, 2016). Data reviewed in Medema et al. (2006) indicate that 

LRVs of Cryptosporidium can take place from 0.4 to 3.2 logs in CF and from 0 to 3.1 logs 

in RF, with mean elimination capacity (MEC) of 1.9 and 2, respectively. The total LRV of 

the DWTP can be calculated as: 

𝐿𝑅𝑉𝑇𝑂𝑇𝐴𝐿 =⁡𝐿𝑅𝑉𝐷𝑖𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 +⁡𝐿𝑅𝑉𝐶𝐹 +⁡𝐿𝑅𝑉𝑅𝐹  (eq. 20) 

where LRVCF and LRVRF are the LRV of CF and RF processes, respectively. Once pathogen 

load at the influent and removal performance of each operation unit has been 

characterised, the exposure to a certain pathogen (dose) can be calculated. 

𝐷𝑜𝑠𝑒 = 𝐶 ·
1

𝑅
· 𝑓 · 10−𝐿𝑅𝑉 · 𝑉 · 𝐼    (eq. 21) 

where C is the expected concentration at DWTP effluent, R is the recovery of the 

detection method, f is the fraction of detected pathogens that is capable of infection, V 
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is the daily individual consumption of drinking water and I is the infectivity. Conservative 

values of these parameters were used from values reported in WHO (2009) and are 

shown in Table 12. 

Table 12. Summary of QMRA-related parameters. 

Parameter Value Units 

ke 5.4·10-3 L·mg-1·min-1 

R 0.136 - 

LRV [0 - 4] Log. units 

V 2 L 

I 0.9 - 

 

7.2.2.3. Dose-response 

The burdens of disease of a certain pathogen are estimated with epidemiological data 

on frequency of asymptomatic infection, duration and severity of illness. Reference data 

for Cryptosporidium was used for calculating DALY using dose-response models. The 

daily probability of infection (Pi, daily) can be then calculated with using an exponential 

dose-response model: 

𝑃𝑖, 𝑑𝑎𝑖𝑙𝑦 = 1 − 𝑒−𝜏·𝐷𝑜𝑠𝑒     (eq. 22) 

where⁡𝜏 is the probability that an individual organism may cause infection and has a 

value of 𝜏 =⁡4.005·10-3 for Cryptosporidium (World Health Organization, 2009).  

 

7.2.2.4. Risk characterisation 

Finally, risk characterisation expresses public health outcomes from exposure and dose-

response models. The annual infection risk (Pi,annual) is calculated as follows: 

𝑃𝑖,𝑎𝑛𝑛𝑢𝑎𝑙 = 1 − (1 − 𝑃𝑖,𝑑𝑎𝑦)
365    (eq. 23) 

Following this calculation, DALY can be calculated as the sum of the years of life lost (YLL) 

and years lived with disability (YLD) with tabulated factors for each microorganism. 

Finally, DALY per person per year (DALYannual) is defined as follows: 

𝐷𝐴𝐿𝑌𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑃(𝑖,𝑎𝑛𝑛𝑢𝑎𝑙) · 𝐼𝑝 · 𝐷𝑖𝑠𝑒𝑎𝑠𝑒⁡𝐵𝑢𝑑𝑒𝑛⁡𝐹𝑎𝑐𝑡𝑜𝑟 (eq. 24) 
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where Ip is the conditional probability of illness following infection (0.7 for 

Cryptosporidium) and Disease Burden Factor is assumed to be 0.00169 (Havelaar and 

Melse, 2003). 

 

7.3. Results and Discussion 

Source water quality scenarios were designated using online available measures and 

presented in section 7.3.1. Following, a framework for assessing the performance of 

treatment units based on the DWTPs process knowledge was developed and presented 

in 7.3.2. As a result of the previous steps, a QMRA-based KPI was configured and a tool 

was developed for supervising the microbiological safety of water through online 

measures in section 7.3.3. Finally, the application of the QMRA-based KPI under different 

source water quality scenarios and treatment performance is discussed in 7.3.3.1 and 

7.3.3.2. 

 

7.3.1. Estimation of source water quality 

Three parameters correlated with Cryptosporidium occurrence in raw water were 

selected as potential parameters having a strong influence on water pollution: Turbidity 

of raw water (TurbRW), Rainfall and the hydraulic retention time in the catchment 

reservoirs (HRTRes).  

The main advantage of using surrogate parameters is that they can be quantified in an 

online manner through commercially available sensors without the need of time-

consuming microbiological analysis. Turbidity has been widely used as surrogate 

measure for many quality parameters at DWTP. It accounts for suspended solids, natural 

organic matter but also for microorganisms associated with water run-off during rainy 

events. Faecal contamination of surface water related to rainfall events has also been 

studied through different methods in the literature (Mohammed and Seidu, 2019; 

Tolouei et al., 2019). Last, reservoir short-circuiting should be also taken into account for 

surface water DWTPs as events leading to significant fluctuations of pathogen 

concentrations (World Health Organization, 2016). 

Time series of these parameters at Ter DWTP influent, together with concentration of 

Clostridium perfringens (used as surrogate for Cryptosporidium), and detections of 

Cryptosporidium are shown in Figure 35. 
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Figure 35. Time series of influent water parameters and bacterial load at Ter DWTP. 

Based on historical influent water quality and process knowledge from Ter DWTP, three 

conservative scenarios for water treatment were drawn for Cryptosporidium 

concentration (High, Medium and Low). 

The expected pathogen load at each scenario were drawn from the pathogen load 

characterisation and the online-available surrogate measures from Table 11 and Figure 

35, respectively. These levels correspond to the baseline, 50th and maximum values 

indicating the low, medium and highest expected pathogen concentration. According to 

past experiences of plant managers and historical events at Ter DWTP, a peak 

concentration level is expected when TurbRW> 10 NTU, Heavy rainfall is true or HRTRes < 

40 days. A high concentration level is expected when 2 > TurbRW > 10 NTU, or 40 < HRTRes 
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< 90 days. A base-line concentration level is assigned in the remaining cases (0.01 

oocysts·L-1). Figure 36 summarises the proposed steps for influent load characterisation. 

 

 

Figure 36. Decision tree for assigning the expected pathogen load at Ter DWTP. 

 

7.3.2. Estimation of process efficiencies on pathogen removal 

Estimates of microbial removal efficiencies were derived for each water treatment 

process using information available from automatic data acquisition systems. 

 

7.3.2.1. Chemical inactivation 

Residuals of free chlorine (Clfree) and chlorine dioxide (ClO2, Res) are online measurable 

parameters at the end of primary and secondary disinfection step. These measures can 

be used in Eq. 1 to calculate LRV of microbial indicators. The contact time can also be 

calculated in online manner by taking into account the HRT of the process and a 

correction factor accounting for effective volumes (USEPA, 2003). 
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7.3.2.2. Physical removal 

There is a widespread range of values reported in the literature to prescribe the removal 

credits for Cryptosporidium in CF and RF processes. In order to reflect the actual 

operation of the plant, performance indices for CF and RF (ICF and IRF, respectively) were 

developed. These indices have a quality and an operational component IQ and IO, 

respectively. Their relationship with the performance index is as follows: 

𝐼𝑖 = 𝛼 · 𝐼𝑄,𝑖 + (1 − 𝛼) · 𝐼𝑂,𝑖       (eq. 25) 

where i is the treatment unit, and 𝛼 is a weighting factor between operational and 

quality aspects on the removal efficiency of Cryptosporidium. Ii has a value between 0 

(meaning poor performance) and 1 (meaning optimal performance). At Ter DWTP, it was 

considered that operational and quality index should have the same weight when 

assessing unit operations performance and a value of 𝛼 = 0.5 was chosen. 

The proposed method uses Ii to prescribe the removal performance of the treatment 

units along its bibliographical range of values. In this regard, the reported triangular 

probability distribution of removal performances in Medema et al. (2006) were used. In 

the proposed method, as shown in Figure 37, a minimum removal performance is 

assigned when Ii=0 (meaning poor process performance); mean elimination capacity 

(MEC) for Ii=0.5 (meaning good but suboptimal process performance) and maximum 

removal credits for Ii=1 (representing optimal process performance).  

 

Figure 37. Log inactivation credits from bibliographic values using the total 
performance index (Ii) 
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The proposed method is a conservative approach for assigning bibliographical LRVs to a 

treatment unit, taking into account their degree of process optimisation measured by 

quality and operational aspects. Due to the difficulty of obtaining sufficient and quality 

data to derive empirical models for Cryptosporidium removal at full-scale facilities, 

bibliographical values and expert opinion on the case-study plant was used to derive IQ 

and IO formulae for the CF and RF processes. As suggested by Gale (2002), if one filter 

performs poorly in a filtration system with several filters in parallel, the total 

performance of this treatment process will be strongly affected by this poor 

performance. The same principle applies for the CF process, and this was taken into 

account to developing IQ and IO. 

As regards to IQ, the continuous reading of effluent turbidity has been used for 

monitoring the efficiency of these processes (Upton et al., 2017), and for developing 

empirical models to calculate LRVs (Bastos et al., 2013; LeChevallier and Norton, 1992; 

Nieminski and Ongerth, 1995). Similarly to Bastos et al. (2013) and guided by previous 

experience of the Ter DWTP, the average of turbidity values (TurbAVG) comprising a 

period of time similar to the HRT of CF and RF processes was used for calculating IQCF 

and IQRF. In the case of CF, TurbAVG below 0.5 NTU corresponded to optimal performance 

(IQCF=1) and on the contrary, IQCF was set to zero when TurbAVG was above 1 NTU. IQ 

between 0 and 1 was linearly calculated with intermediate values of TurbAVG.  

As regards to rapid filtration, the same approach was applied but with a different range 

of TurbAVG. In this latter case, the maximum IQ was assigned for TurbAVG values below 

0.1, as a quality target suggested by (USEPA, 1998) to limit the risk of pathogen passage 

for rapid gravity filtration. The minimum IQ,RF=0 for RF was prescribed for TurbAVG > 0.3 

NTU. A summary of the TurbAVG thresholds used for calculating IQ for CF and RF processes 

is shown in Table 13. 

Table 13. Values of the quality index (IQ) according to the 

average value of turbidity (TurbAVG). 

Treatment unit TurbAVG IQ,i 

CF 

≤0.5 NTU 1 

0.5-1 NTU 0.5 

>1 NTU 0 

RF 

≤0.1 NTU 1 

0.1-0.3 NTU 0.5 

>0.3 NTU 0 
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On the other hand, IO was assessed using operational parameters such as the mean 

sludge age (MSA) and the mean filtration rate (MFR). According to the DWTP expert’s 

opinion, these parameters were chosen for being easily online-monitored and deemed 

to be representative of CF and RF processes stability, respectively. According to internal 

experience in managing CF, MSA values above 240 h corresponded to optimal and stable 

operation of clarifiers (IOCF=1) and MSA below 100 h showed the worst performance 

(IOCF=0). As regards to RF, MFR below the design filtration rate (175 l/s) and above 195 

l/s corresponded to IORF of 1 and 0, respectively. Similarly, TurbAVG, MSA and MFR were 

calculated as the average values in a time period equivalent to the HRT of the operation 

unit. Intermediate cases were interpolated to be in the range [0 - 1]. A time-series of 

main parameters used for calculating IQ and IO for CF and RF processes are shown in 

Figure 38. 

 

Figure 38. Time-series of quality and operational parameters used for calculating IQ and 
IO for coagulation/flocculation and rapid filtration processes. 
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It can be seen that the occurrence of an extreme event in February 2020 (Gloria storm) 

was reflected in TurbAVG values. Apart from this event, operation of the plant lied under 

optimal conditions of TurbAVG, MFR and MSA most of the time.  

 

7.3.3. Implementation of QMRA-based KPI for conventional DWTP 

supervision 

A traffic light KPI was developed to inform DWTP users about the risk associated with 

expected influent load and performance of the treatment units. Good status of the KPI 

(green light) was displayed when the risk was equivalent to less than 10-7 DALY·person-

1·year-1. The acceptable status (yellow light) corresponded to risk between 10-6 and 10-7 

DALY·person-1·year-1, and bad status (red light) corresponded to the rest of the cases 

(>10-6 DALY ·person-1·year-1). The flow scheme for determining the status of the KPI is 

shown in Figure 39. 

 

Figure 39. Flow scheme followed for determining the status of drinking water. 
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Two scenarios were considered to validate the use of the QMRA-based KPI. Scenario 1 

evaluates DWTP risk in front of a peak level of Cryptosporidium under optimal and 

suboptimal performance of CG and RF. Scenario 2 evaluates Ter DWTP risk in front of a 

theoretically alternative water source as the tertiary effluent from a wastewater 

treatment plant (WWTP). 

 

7.3.3.1. Scenario 1: Conventional DWTP performance under historical 

peak events. 

Considering a maximum historical concentration (0.2 oocysts·L-1), DALYannual of Ter DWTP 

product water was calculated assuming combinations of ICF and IRF and shown in Figure 

7. Primary disinfection had little effect on Cryptosporidium removal (LRV=0.23), 

considering a mean residual concentration of 0.4 mg·L-1 and a contact time of 3 hours 

for chlorine dioxide dosing at the primary disinfection. Hence, removal of this 

microorganism was mainly dependent on the physical separation processes. Under 

optimal operation of CF and RF processes (ICF=1 and IRF=1), LRVs of 3.8 and 3.1 log 

removals were expected for CF and RF, respectively. This resulted in 10-9.5 DALY per 

person per year (pppy) of effluent water. As expected, the risk of a water treatment plant 

under optimal operating conditions was found to be substantially lower than the 

recommended WHO value of 10-6 DALY pppy. These values show that, from a theoretical 

point of view, the DWTP would be able to deal with sufficient margin the peak events of 

microbial loads that may happen due to rainfall events, punctual contamination at the 

catchment area or flushing of the reservoirs. Nonetheless, it is expected that the 

continuous occurrence of these events could hinder the treatment performance and 

thus, increase risk related to product water. 
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Figure 40. DALY of Cryptosporidium as a function of coagulation/flocculation and rapid 
filtration performance in a conventional drinking water treatment. Influent 

concentration: 0.1 oocysts·L-1. 

Figure 40 shows that operational or quality conditions leading to ICF below 0.6 and IRF 

below 0.5 (simultaneously) lead to DALY values above 10-7. In this case, a yellow (or red) 

light of the KPI should be displayed to inform DWTP users about an increase of risk. 

Therefore, maintenance tasks involving the by-pass of a treatment process or situations 

leading to under-optimal operation during a peak event should be avoided to not surpass 

the acceptable limits of risk in DWTPs. This is in accordance with a study conducted by 

Hamouda et al. 2016, where QMRA was used to assess several scenarios considering 

treatment failures of DWTPs. Anyhow, it is expected that long-term concentrations of 

0.2 org/L might not occur in conventional surface water DWTPs, and therefore the safety 

of water should not be compromised for short-period events. 

 

7.3.3.2. Scenario 2. Conventional DWTP performance using an alternative 

water source from a WWTP tertiary effluent. 

Even it is neither expected nor planned the use of alternative water sources at Ter DWTP, 

it might serve as an example to evaluate the microbiological impact of water reuse in 

conventional DWTPs. A maximum Cryptosporidium concentration of 0.6 oocysts/L was 

found in tertiary effluent of WWTPs in a study conducted by Montemayor et al. (2005) 

in NE Spain. Due to the proximity of the study, this concentration was used for analysis 
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of this scenario. Figure 41 displays three different KPI levels as a function of performance 

indices ICF and IRF. 

 

Figure 41. DALY of Cryptosporidium as a function of coagulation/flocculation and rapid 
filtration performance in a conventional drinking water treatment. Influent 

concentration: 0.6 oocysts·L-1. 

Under this assumption, surface water DWTPs having CF and RF as unique physical 

removal processes would rely on the optimal performance of one of these two processes 

for safely producing potable water (ICF and IRF>0.8). Results on Figure 8 show that it is 

physically possible to treat tertiary effluent of WWTP using a conventional DWTP with 

CF, SF and chemical disinfection. Even though, it is important to note that this study is 

focused on microbiological safety of water. In order to critically evaluate the feasibility 

and safety of reuse schemes within existing DWTPs, other microbial and chemical 

indicators should be considered in this analysis, like exposure of DBPs linked with water 

reuse (Li and Mitch, 2018), which is out of the scope of this study.  

Some general conclusions can be depicted from the results shown in Figure 41, and is 

that a major degree of robustness in DWTP treatment would be needed in comparison 

with more typical scenarios encountered when dealing with surface water (Figure 40). A 

fast detection of situations leading to high risk of drinking water is crucial for 

implementing corrective measures if necessary, and the incorporation of tools like traffic 

light KPIs can speed up this process. The intuitive communication of these KPIs allow an 

easy and visual identification of the status of a plant facing variations of raw water 

quality and process performance. Using the multiple-barrier concept, the addition of 

another filtration or membrane step would be necessary to consistently address risks 

associated with alternative water sources with higher-than-typical pathogen loads. 
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7.3. Conclusions 

The QMRA framework was adapted to develop a key performance indicator (KPI) that 

assesses the safety of produced water at a drinking water treatment plant (DWTP). 

Online available measures were used to estimate source water quality and process 

indicators were developed to quantify the removal performance of 

coagulation/flocculation and rapid filtration processes in a case-study DWTP. Several 

possible scenarios were analysed to check the performance of a conventional DWTP 

under different pathogen loads and operation characteristics. It has been shown that 

DWTP dealing with surface water rely on the physical separation processes such as 

coagulation/flocculation and rapid filtration steps to safely remove protozoa like 

Cryptosporidium. Under peak pathogen concentrations, the DWTP scheme is effective 

only when these processes accomplish a certain degree of efficiency. Therefore, under 

short term loads of pathogens, it is crucial that utilities prepare their systems well in 

advance (eg. number of working filters, good settling conditions) to ensure a minimum 

grade of performance targeting 10-6 DALY per person per year. In front of possible 

alternative water sources like tertiary effluent from wastewater treatment plants, it was 

shown that an additional separation process would be needed for ensuring 

microbiological safety of water in the long-term. The presented tool can be very useful 

for practitioners as for speeding up the process of detecting situations in which the 

safety of water could be compromised. 
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This chapter discusses the practical implications of the developed EDSS modules for 

DWTP management and discusses the accomplishment of the general objective of this 

work. Finally, some general limitations and future steps are commented. 

 

8.1. EDSSs for drinking water treatment 

Drinking water treatment plants are exposed to increasing water quality restrictions 

while the quality of resources follows a negative trend. This is indeed a challenge for 

DWTP managers to make the best use of existing treatment units and adapt them to a 

varying raw water quality. Whereas research on disinfection by-products and natural 

organic matter transformation along drinking water treatment process has gained much 

research attention, many EDSS authors have outlined the need for translating all this 

knowledge into models that can more accurately reflect DWTP needs. In this sense, this 

thesis tackles some of the main issues in DWTP process control such as the management 

of oxidation and disinfection processes taking into account the by-products formation, 

and makes a step-forward in practical applications of EDSS at full-scale plants.  

The water sector is undergoing a digital transformation to face challenges related to 

sustainability of resources, infrastructure management, climate change and 

demographics (Sarni et al., 2019). Among operational aspects of DWTPs, real-time 

support by means of predictive models is thought to have an important effect in 

operation in what is known as augmented intelligence (Savic, 2020). In these systems, AI 

methods enhance human decisions, which are at the centre of the control loop. 

The EDSS development framework proposed in Poch et al. (2004) has been followed to 

address some of the main operational challenges of surface water treatment plants 

using two full-scale DWTPs as case studies. Following exhaustive technical and scientific 

revision, different models have been developed to predict the operational set-points and 

provide recommendations to treatment plant managers. Special attention has been paid 

in developing models that make the best use of available data (from sensors, probes and 

lab data) and the experience of plant managers to handle operational set-points. This 

premise led to develop knowledge-based and data-driven models with the objective of 

delivering support to decision-making in the more transparent and user-understandable 

manner. 
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8.2. Models Integration and Decision Support 

 

The developed models have been integrated in one EDSS for each case study DWTP: 

Llobregat and Ter. The graphical user interfaces developed for these two EDSSs, as well 

as for the microbiological risk supervisor system, are presented in the following 

subsections. 

Generally, the presented tools share the same objective of retrieving data from the 

online data acquisition system, but allowing the user to edit input values for performing 

analysis of treatment scenarios. Detailed information about each component of the 

EDSS is displayed and a user guide for each application was provided to the users. 

 

8.2.1. DrinkIA PTLL EDSS 

 

The different EDSS modules developed for Llobregat DWTP were integrated under a 

common platform, called DrinkIA-PTLL, whose main screen can be seen in Figure 42. 

 

Figure 42. Screenshot of the DrinkIA-PTLL EDSS: Main screen 
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On the upper-left corner there is a table with all the input variables used by the different 

modules integrating the EDSS. The values of the variables are automatically read either 

from the SCADA System (instantaneous reading) or from the historical data database, 

depending on their availability. In the case that some sensor is out of service or gives 

abnormal values, data is retrieved from the laboratory analysis database of ATL. The user 

can see the value, the units and also the time that they were retrieved and refresh their 

values by clicking on a button. Also, the user can edit these values to check the EDSS 

performance for different quality scenarios. 

The treatment train of Llobregat DWTP along with the main operational set-points 

proposed by the EDSS is shown at the centre of the screen. The proposed set-points are:  

a) Dosing rate of potassium permanganate at the pre-oxidation step. 

b) Dosing rate of polyaluminum coagulant at the coagulation step. 

c) Dosing rate of chlorine dioxide at the oxidation step. 

d) Number of EDR modules to activate at the EDR step. 

Overall, the tool presents high flexibility for performing scenario analysis and the user 

has access to separate screens for more detailed information about the different models 

in a user-understandable manner. The components b) and c) were developed but are 

outside of the scope of this thesis. Components a) and d) are further explained in the 

following two subsections. 

 

8.2.1.1. Pre-oxidation module 

Figure 43 shows the pre-oxidation module, that integrates the models developed in 

Chapter 4. 
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Figure 43. Screenshot of the DrinkIA-PTLL EDSS: Pre-oxidation module 

The input variables together with their values are displayed in the upper-left corner, 

together with the proposed dosing rate by the predictive model. A representation of the 

artificial neural network structure and the expert rules that supervise it are shown 

below. In this case, it is shown that the output of the ANN is coupled with an expert rule 

that supervises the concentration of residual manganese at the effluent of the sand 

filters. 

Uncertainty of the model, together with a case-based representation of past actions of 

users given similar quality conditions, is displayed on the right side of Figure 43. This 

representation is aimed at supporting the predictive model output and allows the user 

to gain confidence on the mathematical models. 

Finally, the user can also look at manually validated scenarios that are similar to the 

present one by clicking the button at the bottom-right corner. 
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8.2.1.2. EDR Management 

The predictive model for THMs formation at Llobregat DWTP was incorporated in the 

DrinkIA-PTLL EDSS as shown in Figure 44. 

 

Figure 44. Screenshot of the DrinkIA-PTLL EDSS: EDR Management 

Different tables on the left side in Figure 44 show the operational and quality parameters 

of Llobregat DWTP that influence DBPs formation and therefore, the EDR management. 

These values are automatically imported from online sensors, and some of them are 

calculated from other measures. All of them are editable, allowing the user to perform 

treatment scenarios. Given the quality parameters of GAC effluent and the operational 

parameters of EDR (number of modules), the EDR effluent quality is calculated. Then, 

the THMs formation model developed in Chapter 5 is fed with this data, and results are 

displayed in the graphic on the bottom-right corner of the figure. 

Several results can be displayed, in particular: 

٠ THMs formation curve (from 0 to 120h). 

٠ THMs prediction at DWTP storage tanks effluent (boxplot with Monte Carlo 

outputs). 

٠ THMs prediction at critical point of the distribution network equivalent to a 

hydraulic retention time of 48h (boxplot with Monte Carlo outputs). 

٠ THMs prediction at critical point of the distribution network equivalent to a 

hydraulic retention time of 96h (boxplot with Monte Carlo outputs). 
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With this information, the user can check the effects of operating the EDR treatment 

with different number of modules and see the predicted THMs formation along different 

points of the distribution network. The traffic light is a visual indicator of the predicted 

water quality according to the standards of the distribution network management 

practices. 

 

8.2.1.3. Validation 

Validation of the different DrinkIA PTLL EDSS components is performed by accessing the 

validation tab (Figure 45). 

 

Figure 45. Screenshot of the DrinkIA-PTLL EDSS: Validation tab. 

In this tab, users can validate the results proposed by the EDSS on the different modules 

by clicking a check-box or by manually correcting the proposed solution. To further 

justify the correction or to provide feedback to the EDSS developer, there are text boxes 

where the user can insert comments for each EDSS module. 

Finally, the user is identified and the validation information is registered into a Microsoft 

Excel® file for the purpose of following up the EDSS implementation and validation. 
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8.2.2. DrinkIA PTT EDSS 

Results obtained in Chapter 6 using Ter DWTP as case study have been integrated in the 

DrinkIA PTT EDSS, aimed at supporting decision-making at the treatment units. 

Following in the same way as for the DrinkIA-PTLL EDSS, the main screen of DrinkIA-PTT 

is shown in Figure 46, where the data acquisition, operational set-points proposed by 

the system and tabs linking to the different modules can be accessed. 

 

Figure 46. Screenshot of the DrinkIA-PTT EDSS: Main screen 

The proposed set-points for Ter DWTP are: 

a) Dosing rate of chlorine dioxide at the primary disinfection step. 

b) Free-chlorine set-point at the primary disinfection step. 

c) Dosing rate of coagulant at the coagulation step. 

The proposed set-points by the EDSS can be validated and feedback from users can be 

registered at the validation tab. The component c) is outside of the scope of the thesis 

and is not included in this discussion. Components a) and b) are described in the 

following subsection. 
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8.2.2.1. Primary Disinfection 

The primary disinfection tab is shown below in Figure 47. 

 

Figure 47. Screenshot of the DrinkIA-PTT EDSS: Primary Disinfection. 

In this screen, users can consult the values of the input variables that are taken into 

account for the control of the primary disinfection step. On the right side of Figure 47, 

the different levels of the EDSS architecture is shown and divided into Data Acquisition, 

Control level and Supervisor level. The reasoning algorithms composing these levels are 

discussed in Chapter 6 and users can know the detail of the fuzzy systems by clicking on 

the different tabs. 

A text describing the reasoning model and is displayed at the left side of the screen. This 

text justifies the proposed operational set-points in qualitative terms for the primary 

disinfection, which are shown at the bottom-left part of the screen. This way, the users 

can see the steps followed by the EDSS to reach a solution. 
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8.2.3. Microbiological risk-based supervisor system 

The framework for assessing the risk associated with waterborne pathogens in drinking 

water discussed in Chapter 7  has been integrated into an application for real-time 

supervision of the drinking water treatment, using Ter DWTP as case study (Figure 48). 

 

Figure 48. Screenshot of microbiological risk-based supervisor system. 

In this application, the users can visually check the status of the treatment process in 

terms of risk related to the presence of microorganisms at the DWTP influent. 

The target microorganism is selected from a drop-down list displayed at the upper-left 

corner of the screen. The expected influent load, according to raw water characteristics 

in the left side of the picture is also shown. 

Then, the removal performance of the main treatment units (primary disinfection, 

coagulation/flocculation and rapid filtration) for the selected microorganism is shown. 

Finally, two metrics assessing the risk associated with drinking water at the DWTP 

effluent are shown: Annual probability of infection (Pinf annual) and disability adjusted life 

years per person per year (DALY pppy). 

A traffic light is displayed at the bottom of the screen, indicating the risk associated with 

the actual operation of the plant. 
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8.3. Main contributions regarding the control and management of 

DWTPs 

Chapter 4 reports on the development of an artificial neural network that predicts the 

potassium permanganate dose to be applied to the raw water of a drinking water 

treatment plant, in order to maximise the oxidative capacity at this point. Data-driven 

models like ANNs can be built upon real data generated in full-scale DWTP to predict 

operational parameters that best cope with inflow water quality. In order to overcome 

the black-box nature of data-driven models, a comprehensive parameter estimation, 

uncertainty and sensitivity analysis of the models has been reported. Moreover, a case-

based reasoning model has been developed to further support the predictive model 

outputs. The uncertainty propagation in the ANN and the results of CBR system allows 

the end-user to gain confidence upon model results. The developed model considers the 

influent water quality, as well as operational conditions, for predicting the potassium 

permanganate to be dosed. Therefore, the study tackles some of the main issues in 

DWTP process control and quantification of uncertainty of ANNs. The presented 

configuration has proved a great potential for incorporating black-box models in 

decision-making processes. Finally, a graphical user interface has been presented for 

interfacing the model outputs with the end user. 

Chapter 5 tackles the formation of disinfection by-products and links it to the operation 

of the advanced treatment process of Llobregat DWTP, which consists of an 

electrodialysis reversal step. THMs formation has been largely studied in the drinking 

water treatment field and several empirical models have been developed, but so far, no 

studies have reported their implementation at the operation level of drinking water 

systems. Predictive models for THMs formation have been compared using field-scale 

data and the uncertainty of model outputs has been quantified for a Llobregat DWTP. In 

the light of the results obtained, the presented tool has proved to be very useful and 

capable of predicting DBPs formation under all the conditions included in the studied 

one-year period (1/3/2019 – 1/3/2020). 

Chapter 6 reports on the development of a novel control strategy for the primary 

disinfection process in a surface drinking water treatment plant. Knowledge-based 

models like fuzzy inference systems were built upon the experience of plant managers 

in full-scale DWTP to handle operational set-points, using data from commercially 

available sensors. The present study focuses in a case-study DWTP whose primary 

disinfection consisted in a combined dosing of chlorine dioxide and sodium hypochlorite. 

The phenomena occurring in drinking water treatment and factors associated with 

disinfection by-product formation have been carefully taken into consideration. The 
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developed models have been integrated into an environmental decision support system 

(EDSS) that provides treatment recommendations to DWTP users in real-time, 

considering influent and effluent water quality. In the light of the results obtained, the 

presented tool has been very useful and capable of managing DBPs formation under all 

the conditions included in a 6-months testing period at full-scale. The presented 

methodology can be used at similar surface water DWTPs for developing control 

strategies to manage DBPs formation in such nonlinear systems where few data 

available but there is a valuable accumulated experience in managing the process. 

The two main challenges of drinking water production are minimising DBPs formation, 

while minimising microbial risk associated with raw water. Chapters 4 to 6 have focused 

in providing treatment recommendations that either directly (through model 

predictions) or indirectly (through systematisation of the know-how) target a 

minimisation of DBPs formation. Chapter 7 proposes a framework for developing a new 

key process indicator (KPI) based on quantitative microbial risk analysis that evaluates 

the risk of the actual operation conditions of a DWTP under expected pathogen loads. 

The KPI is intended to be integrated in SCADA systems as an alarm preventing from 

possible operation conditions leading to an increase of the microbial risk in water. In this 

way, it is ensured that individual EDSS modules aimed at minimising DBPs do not affect 

negatively the overall safety of drinking water. 

In general, the work presented in this thesis provides example to other DWTPs willing to 

move toward the digitalisation of their operation practices. Some of the benefits that 

can be accomplished with the implementation of EDSS for aiding in the management of 

DWTPs are:  

٠ Augmented capacities for DWTP users by means of process modelling and 

predictive tools. 

 

٠ Deeper understanding on the process characteristics by performing treatment 

scenarios. 

 

٠ Increased awareness and quantification about consequences of certain actions 

on the DBPs formation and/or microbiological risk. 

 

٠ Real-time decision-support to face changes in raw water quality, increasing 

robustness of DWTPs’ management. 

 

٠ Increased autonomy of operators who are on shift works, especially when 

working out of office hours. 
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8.4. Present limitations and future steps 

Although the main objective of this thesis was fulfilled, some aspects remain to be 

addressed in future research to further improve the developed tools in this thesis. 

Diversity of DWTPs related challenges 

First of all, there are a great diversity of DWTPs, depending on the source water quality 

they have to treat and each one of them have different operational challenges. In this 

thesis, operational challenges regarding the pre-oxidation, disinfection and 

electrodialysis process were addressed. Still, there are other aspects that need attention 

such as the management of the coagulation/flocculation and filtration processes. These 

latter ones, have also been also studied and models have been developed in the EDSS 

for Llobregat and Ter DWTPs, but they are still at a preliminary stage. More work is 

needed to formalise and validate these models. 

Also, there is a great diversity of DWTPs and each one of them has different source water 

characteristics. At the present study, two DWTPs were analysed: Llobregat and Ter 

DWTPs. Even they are geographically close to each other (about 50 km), their source 

water presents huge differences, which generates different treatment and management 

needs. These two case studies can serve as an example of the heterogeneity of DWTPs 

and of different challenges to be faced. Nonetheless, specific studies would be necessary 

to translate the proposed systems to new DWTPs in order to tailor the EDSSs to the 

specific needs of these utilities. 

Model development challenges 

As regards model development, the quality of data-driven models is strictly dependent 

on the quality of data used for calibrating them. Datasets were carefully selected to use 

process representative data and for the operative range of each treatment unit. Even 

though, there are some limitations using field-scale data. On the one hand, field-scale 

data is representative of the full-scale process but on the other, the range of the input 

variables is limited to the natural variations of raw water. This is in contrast with lab-

scale or experiments with synthetic waters, where the effect of each of the parameters 

can be individually assessed (through various experimental design approaches). 

Therefore, even special attention was taken on structural validation of the developed 

models, their use is limited to the case-study DWTP under the studied conditions. 

Further validation with lab-scale experiments could demonstrate a wider applicability or 

delimit the useful range of application of the mathematical models. 
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Also related to the availability of data that is used for modelling a system, some models 

were developed with the aim to optimise a system (e.g. by modelling the effect of a 

treatment unit on water quality variables) and others were focused on systematising a 

decision-making process (e.g. by finding patterns in the historical data relating raw water 

quality parameters and operational set-points). This has some limitations, as it relies on 

the good previous management of the plant. We consider that this is a first step in the 

digitalisation of these utilities, but modelling efforts should be directed to optimisation 

rather than just predictions from previous experiences. Anyhow, this is a first step 

towards a more systematic and resilient management of DWTP treatment units. 

Disinfection by-products related challenges 

Regarding DBPs formation, this work has focused almost exclusively in THMs, as this 

family of DBPs has been typically used as indicator compounds for other DBPs that cause 

toxic responses in drinking water. Nonetheless, THMs values are calculated as the sum 

of four different compounds (chloroform, bromodichloromethane, 

dibromochloromethane and bromoform), each one of them showing different toxicity. 

The proportion of these species on the overall THMs concentration has not been taken 

into account in the present study, which has focused more on the regulation limits rather 

than on the toxicological effects of these compounds. Quantitative chemical risk 

assessment could be performed in order to further evaluate the effects of the treatment 

(eg. EDR operation) not only on the quantity but also the composition of THMs. 

Another challenge regarding model development is the inclusion of new DBPs that might 

be regulated in the near future. The present study has focused mostly on the formation 

of THMs, which have been the most targeted family of compounds in Spain since their 

inclusion in the European Directive (98/83/CE, 1998). Nonetheless, a new draft of the 

revised European drinking water directive was released at 2018 and new families of DBPs 

have been added to the watchlist, such as chlorites, chlorates and haloacetic acids. The 

concentration limits in the actual European Directive and in the renewed one are 

summarised in Table 14. 

Table 14. Comparison of regulation limits for several disinfection by-products between 
the European Council Directive 98/83/EC and its proposed adaptation made in 2018. 

Parameter 98/83/EC 98/83/EC – 2018 Adapted 

Total trihalomethanes (THMs) 100 μg·L-1 100 μg·L-1 
Haloacetic acids (HAAs) - 80 μg·L-1 
Chlorites - 250 μg·L-1 (*) 
Chlorates - 250 μg·L-1 (*) 
(*) This value could be modified to 700 μg·L-1 in utilities using chlorine dioxide as disinfectant. 
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In this new directive, haloacetic acids might be limited to 80 μg·L-1 and both chlorites 

and chlorates might be limited to 250 μg·L-1. Other families of unregulated DBPs such as 

nitrogenous DBPs (N-DBPs) are generally more toxic than THMs and HAAs (Wagner and 

Plewa, 2017), even their concentrations might be lower at drinking water systems (Farré 

et al., 2020). Measuring and modelling the occurrence of these compounds at full-scale 

DWTPs is costly, and most often, the laboratory analysis is difficult as there are no 

established protocols for measuring them in a routinely basis. We expect that this will 

change as techniques for measuring these compounds become available at a lesser cost 

and more data on the occurrence of these new compounds at DWTPs becomes available. 

Anyhow, it is expected that this will add complexity in DWTP management and 

therefore, predictive tools that are able to find a balance between treatment cost and 

DBPs formation could show their usefulness in ameliorating this process. 

It is often the case that research on DBPs is some years ahead of what practitioners are 

actually concerned about. We think that more applied research should be done linking 

the research field with practical recommendations for operating full-scale plants, using 

the common technologies found in the existing utilities. Utilities do not often have the 

most recent technologies for advanced oxidation and removal of these compounds. 

Therefore, new tools should be developed to aid in this transition. 

Implementation of EDSS challenges 

In relation to the implementation of the EDSSs, this can only be validated through their 

use and feedback from users. Therefore, the real impact of the developed tools will be 

seen in the upcoming months or years. The transfer of the EDSS from the academia to 

the company is critical for a successful adoption of the system (Poch et al., 2017). The 

longevity of the project is dependent on the adoption and maintenance of the tool by 

the company. Future versions of the developed tools should consider using open source 

software that can be maintained by ATL or by other companies, so modifications can be 

done if deemed necessary or new modules can be added. This would underpin a 

successful transfer of the developed tool to the “market” or in this case, the ATL 

company. 

Last, digitalisation is a transformative process among all water and wastewater utilities 

to face 21st century climatic, demographic and sustainability challenges. The 

development of digital technologies (including AI algorithms) in the sector can bring 

operational benefits such as process excellence, predictive maintenance and regulatory 

compliance (Sarni et al., 2019). All these technologies need strong digital strategies 

among companies that support integrated data infrastructures that allow the 
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development of analytic tools used for decision making. In this regards, digitalisation of 

utilities should be considered a business priority. 

Towards integrated management of drinking water systems 

Also, the present thesis aims to support the control and management of individual 

DWTPs. In a wider system such as ATL distribution network, that connects different 

DWTPs in a complex distribution network, an integrated approach for the management 

of the network would report benefits in making the most of managing the DWTPs taking 

a bigger picture of the problem. Efforts in this direction should be taken into account in 

future projects. 
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The present thesis focused on the development of environmental decision support 

systems for assisting DWTPs personnel in systematising their decision-making in setting 

the main operational set-points of the treatment process. This tool aimed to take into 

account the real-time variations of raw water quality to produce safe and high quality 

potable water at all times. To pursue this goal, two case studies using surface water were 

used and several treatment units were studied. 

In Chapter 4, an artificial neural network was developed to predict the oxidant demand 

in the raw water of a Drinking Water Treatment plant has been developed using 

historical data from a full-scale facility. Moreover, uncertainty of the artificial neural 

network was quantified and compared to a case-based reasoning model for their 

implementation as control system. The presented framework makes a step forward in 

overcoming the blackbox nature of data-driven models and implementation in full-scale 

facilities. 

Chapter 5 reported on the development of a model for predicting the THMs formation 

at the distribution network. To these means, several data-driven models were 

benchmarked and then integrated in an EDSS for supporting the operation of the 

advanced treatment in Llobregat DWTP, composed by an electrodialysis reversal 

process. The presented system couples the predictive model with expert criteria, moving 

towards informed and predictive management of DWTPs. Thanks to this system, the 

effects of certain operation practices on the disinfection by-products exposure at 

different points of the water supply network can be quantified. 

In Chapter 6, an EDSS for controlling the primary disinfection at Ter DWTP was 

developed. To this end, fuzzy inference systems were used to consolidate the 

accumulated experience of a process and systematise the decision-making taking into 

account the DBP formation. The developed system was tested against variations of raw 

water quality and was compared against similar periods without the control system. 

Fuzzy logic-based systems were shown useful where data is scarce or difficult to obtain, 

but there is a contrasted experience in managing a certain system. The developed 

system was implemented at full-scale and the systematisation of the decision making in 

the primary disinfection process was successfully achieved, maintaining disinfection by-

products formation under acceptable levels.  

Finally, in Chapter 7, the quantitative microbiological risk assessment (QMRA) 

framework was adapted to develop a key performance indicator assessing the safety of 

produced water at DWTPs, using Ter DWTP as case study. The proposed framework 

attempts to estimate the microbial risk of DWTPs’ product water by assessing the 

performance of the different treatment units. The developed tool increases the level of 



Chapter 9: Conclusions 

138 

awareness of DWTPs in front of changes in raw water quality or short term treatment 

failures and their effects on the microbiological safety of treated water. 

The developed models were integrated into a graphical user interface to help in daily 

operation of DWTPs. The overall performance of the EDSS was positively validated and 

permitted to do a step forward in the systematisation of process knowledge and data in 

utilities that are challenged by varying source water quality. 
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Annex I 

A1.1. MATLAB functions 

 

Table A 1. Descriptions of MATLAB functions. 

MATLAB function Description 

corr(X) Returns a matrix of the pairwise linear correlation between 
variables in the input matrix of size (m x n), where m is the 
number of observations and n is the number of independent 
variables. 

cov(X) Returns the covariance matrix of input matrix of size (m x n), 
where m is the number of observations and n is the number of 
independent variables. 

ecdf(y) Returns the empirical cumulative distribution function using data 
of the input vector. 
 

fitlm() Fits a linear regression model to variables in input matrix X of size 
(m x n), where m is the number of observations and n is the 
number of independent variables, and vector y (dependent 
variable). Model specifications can be formulated when calling to 
this function, such as robust regression options or model type 
options (linear, quadratic, interceptions…). The output of this 
function is an object containing the linear model attributes and 
characteristics. 
 

ksdensity() Returns a probability density estimate f, for the sample data in 
the input vector x. This estimate is based on a normal kernel 
function and evaluated at equally-spaced points, covering the 
range of data in x. 
 

lsqnonlin() Solver for nonlinear least-squares curve fitting problems. The 
inputs needed for using this solver are a function fun to optimise 
and a vector x0 with initial values for starting the iterations. The 
output of this solver is a vector x that minimise the optimisation 
function fun. Additional characteristics such as maximum 
number of iterations and constraints to the parameter 
estimation problem can be added. 
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mvnrnd() Returns a matrix of random vectors chosen from the multivariate 
normal distribution with mean vector mu and covariance matrix 
sigma. 

nlinfit() Returns a vector of estimated coefficients for the nonlinear 
regression. The coefficients are estimated using iterative least 
squares estimation, with initial values being provided as inputs 
to this function. Other inputs needed are the specified model fun, 
a vector with model responses Y and the predictors matrix X. 

rand() Returns uniformly distributed random numbers in the interval 
(1,0). 

selforgmap() Returns a self-organizing map structure based on user-defined 
characteristics such as dimensions, layer topology and neuron 
distance function. The self-organizing map is then calibrated 
using train() function to the input matrix X of size (m x n), where 
m is the number of observations and n is the number of 
independent variables. 

 

A1.2. Model performance metrics 

R-Squared (R2) 

The coefficient of determination, also known as R-Squared, R2 is a commonly used metric 

for assessing the goodness of fit of a model. R2 measures the degree of linear relationship 

between two variables X and Y as the square of the correlation coefficient. An R-Squared 

value of 1 indicates a perfect fit with data, whereas a value of 0 indicates no correlation 

between the two variables. 

𝑅2 = (∑
(𝑥𝑖−𝑥̅)·(𝑦𝑖−𝑦̅)

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1 ·∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

⁡𝑛
𝑖=1 )

2

      (eq A.1) 

Where xi is the ith observation of variable X, 𝑥̅ is the mean value of X, yi is the ith 

observation of variable Y and 𝑦̅ is the mean value of Y, and n is the number of 

observations in the dataset 

 

Ajusted R-Squared (Adjusted-R2) 

The definition of the Adjusted-R2 builds upon R-Squared, but it is adjusted for the 

number of terms in a model. Therefore, it corrects the problem of adding too much 

independent variables for obtaining higher R2 values, possibly causing overfitting 

problems. 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑⁡𝑅2 = 1 − [
(1−𝑅2)·(𝑛−1)

𝑛−𝑘−1
]     (eq A.2) 

Where k is the number of independent variables used in the model. 

 

Spearman’s rank correlation coefficient (ρ) 

Spearman’s rank correlation coefficient (ρ) measures the degree of agreement between 

two variables. In comparison to Pearson’s correlation coefficient, ρ is suitable for both 

ordinal and continuous variables and can be used for measuring both linear and 

nonlinear relationships. In this method, the ranks of values are used instead of the values 

themselves.  

The difference between two rank values is defined as: 

𝑑𝑖 = 𝑅(𝑥𝑖) − 𝑅(𝑦𝑖)        (eq A.3) 

Where R(xi) is the rank of the ith value of variable X. Following, the Spearman’s rank 

correlation coefficient can be calculated as: 

𝜌 = 1 −
6·∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
       (eq A.4) 

 

Mean Absolute Error (MAE) 

The mean absolute error is calculated as follows: 

𝑀𝐴𝐸 = ⁡
∑ 𝑎𝑏𝑠⁡(𝑦𝑖−𝑓(𝑥𝑖))
𝑛
𝑖=1

𝑛
      (eq A.5) 

Where f(xi) is the model evaluated at the ith observation of X. 
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Annex II 

A2.1. Sensitivity Analysis  

 

A2.1.1. Connection Weight (CW) method 

CW is an approach for assessing the relative importance of input variables. The overall 

connection weight (OCWi) is calculated as the sum of the product of input-hidden and 

hidden-output weight connections for each input variable (eq. A.2). From this, the 

relative importance of each input RICW,i is calculated following eq. A.1 and A.2. 

 

𝑂𝐶𝑊𝑖 = ∑ 𝑤𝑖,𝑗 · 𝑤𝑗,𝑂
𝐽
𝑗=1        (eq. A.6) 

 

𝑅𝐼𝐶𝑊,𝑖 =
𝑂𝐶𝑊𝑖

∑ |𝑂𝐶𝑊𝑘|
𝐾
𝑘=1

 100       (eq. A.7) 

 

where wi,j is the connection weight between the ith input variable and jth hidden node, 

and wj,O is the connection weight between the jth hidden node and the output. 

  

A2.1.2. Partial Derivatives Method 

PaD method computes, as the name indicates, the partial derivative of the model output 

with respect to the input variables. The approach for single hidden-layer MLP with 

sigmoid activation function can be computed with eq. A.3, giving a result for every 

n=1…N observation on the dataset. 

 

𝜕𝑂𝑛

𝜕𝐼𝑖,𝑛
= 𝑂𝑛(1 − 𝑂𝑛) · ∑ 𝑤𝑗,𝑂ℎ𝑗,𝑛(1 − ℎ𝑗,𝑛)𝑤𝑖𝑗

𝐽
𝑗=1      (eq A.8) 
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where On is the output of the nth observation, Ii is the ith input variable, hj is the output 

of the jth hidden node. From the partial derivative, the root mean squared derivative 

(RMSDi) and the relative importance (RIPaD,i) can be calculated with eq. A.4 and A.5. 

 

𝑅𝑀𝑆𝐷⁡𝑖 = √∑ (
𝜕𝑂𝑛

𝜕𝐼𝑖,𝑛
)2/𝑁𝑁

𝑛=1       (eq A.9) 

 

𝑅𝐼𝑃𝑎𝐷,𝑖 =
𝑅𝑀𝑆𝐷𝑖

∑ 𝑅𝑀𝑆𝐷𝑘
𝐾
𝑘=1

⁡100       (eq A.10) 

 

A2.1.3. Profile Method 

The Profile Method is a one-at-a-time SA method, in which the variable of interest is 

evaluated over the range, while keeping the rest of the variables fixed at their minimum, 

1st quartile, median, 3d quartile and maximum values. The median of these outputs is 

calculated to represent the median output variation. The RI using this method can be 

calculated as follows: 

 

𝑅𝐼𝑃𝑀,𝑖 =
max(𝑦̂𝑖)−min⁡(𝑦̂𝑖)

∑ [max(𝑦̂𝑖)−min⁡(𝑦̂𝑖)]
𝐾
𝑘=1

· ⁡100    (eq A.11) 

 

where 𝑦̂𝑖  is a vector of median output values obtained by varying the ith input over its 

range. 
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A2.2. Summary statistics of ANN models  

Table A 2. ANN-1 summary statistics of parameter estimators. 

Parameter Mean St. Dev. 95% CI 

w1,1 0,814 0,100 ±0,197 

w2,1 1,074 0,157 ±0,308 

w3,1 0,548 0,083 ±0,163 

w4,1 -0,175 0,054 ±0,107 

w1 2,883 0,184 ±0,361 

b1 1,064 0,129 ±0,252 

b2 -1,898 0,149 ±0,292 

 

 

 

Table A 3. ANN-4 summary statistics of parameter estimators. 

Parameter Mean St. Dev. 95% CI 

w1,1 1,213 0,518 1,016 

w2,1 -0,111 0,130 0,255 

w3,1 0,381 0,334 0,656 

w4,1 -1,003 0,380 0,745 

w1,2 -0,005 0,011 0,021 

w2,2 0,815 0,109 0,214 

w3,2 0,488 0,086 0,168 

w4,2 0,080 0,079 0,155 

w1,3 -1,115 0,267 0,525 

w2,3 -1,292 0,321 0,630 

w3,3 0,035 0,060 0,117 

w4,3 -0,699 0,139 0,273 

w1,4 -1,421 0,150 0,295 

w2,4 -0,868 0,172 0,339 

w3,4 -0,036 0,044 0,087 

w4,4 0,179 0,131 0,257 

w1 -0,980 0,313 0,614 

w2 3,118 0,292 0,574 
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w3 2,039 0,147 0,288 

w4 -3,721 0,224 0,440 

b1 0,485 0,259 0,509 

b2 1,300 0,155 0,305 

b3 0,290 0,074 0,146 

b4 -0,387 0,051 0,099 

b5 -1,203 0,205 0,401 

 

 

Table A 4. ANN-7 summary statistics of parameter estimators. 

Parameter Mean St. Dev. 95% CI 

w1,1 -3,620 0,499 0,980 

w2,1 0,487 0,477 0,937 

w3,1 2,408 1,392 2,733 

w4,1 0,471 0,468 0,919 

w1,2 -0,022 0,062 0,122 

w2,2 0,933 0,087 0,171 

w3,2 1,723 0,362 0,711 

w4,2 -1,127 0,250 0,491 

w1,3 0,006 0,026 0,051 

w2,3 -1,427 0,028 0,056 

w3,3 -0,820 0,223 0,437 

w4,3 0,006 0,010 0,020 

w1,4 1,752 0,444 0,871 

w2,4 1,125 0,118 0,232 

w3,4 -0,153 0,388 0,762 

w4,4 -0,904 0,647 1,270 

w1,5 0,658 0,123 0,241 

w2,5 -0,100 0,118 0,231 

w3,5 -1,371 0,333 0,654 

w4,5 1,300 0,227 0,446 

w1,6 0,171 0,380 0,745 

w2,6 -1,341 0,221 0,434 

w3,6 -0,241 0,209 0,410 

w4,6 -0,873 1,280 2,514 
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w1,7 -3,344 0,577 1,134 

w2,7 -0,594 0,165 0,325 

w3,7 0,066 0,117 0,230 

w4,7 -0,172 0,264 0,519 

w1 -0,298 0,055 0,107 

w2 1,124 0,003 0,005 

w3 -1,641 0,050 0,098 

w4 0,162 0,001 0,001 

w5 0,548 0,013 0,026 

w6 -0,068 0,038 0,076 

w7 -0,476 0,015 0,028 

b1 0,313 0,566 1,111 

b2 -1,117 0,292 0,573 

b3 -1,881 0,199 0,391 

b4 0,076 0,029 0,058 

b5 0,189 0,107 0,209 

b6 0,138 0,410 0,806 

b7 -1,234 0,237 0,465 

b8 -0,004 0,016 0,031 
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A2.3. Correlation of ANN model parameters 

 

Figure A 1.  Representation of ANN-1 model parameters correlation. 

 

Figure A 2. Representation of ANN-1 model parameters correlation. 
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Figure A 3. Representation of ANN-1 model parameters correlation. 
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A2.4. Representation of uncertainty in ANN predictions 
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Figure A 4. Representation of uncertainty in ANN-1 predictions for KMnO4 demand 

time-series using Monte Carlo method for ANN1, showing the experimental values 

vs the model output, with 10th and 90th percentile for the period 1/1/2015-1/9/2018. 
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Figure A 5. Representation of uncertainty in ANN-4 predictions for KMnO4 demand 

time-series using Monte Carlo method for ANN1, showing the experimental values 

vs the model output, with 10th and 90th percentile for the period 1/1/2015-1/9/2018. 
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Figure A 6. Representation of uncertainty in ANN-7 predictions for KMnO4 demand 

time-series using Monte Carlo method for ANN1, showing the experimental values 

vs the model output, with 10th and 90th percentile for the period 1/1/2015-1/9/2018. 
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A2.5. Profile method plots 

 

                    

Figure A 7. Profile method plots for ANN-1. 
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Figure A 8. Profile method plots for ANN-4. 
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Figure A 9. Profile method plots for ANN-7. 
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Annex III 

A3.1. Profile method plots 

 

 

Figure A 10. Profile method plots of MLR considering variations on input variables: A) 

UV254; B) TOC; C) ClDose; D) Temperature; E) pH; F) Bromide 
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Annex IV 

A4.1. Regression results 

 

Figure A 11. Predicted versus modelled ClFree MC values from NaOCl and ClO2 doses. 

 

Figure A 12. Predicted versus modelled TOCRW values from fDOMRW and TRW values. 
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A4.2. Operational conditions at Ter DWTP 

 

Figure A 13. Input values during implementation of EDSS. 
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A4.3. Responses of different EDSS levels 

 

Figure A 14. Control level, supervisor level 1 and 2 responses to ClFreeMC and ClO2 Dose 

along the implementation of the EDSS on the full-scale facility 


